4.5 Article

Influence of Surface Roughness on the Transfer Film Formation and Frictional Behavior of TiC/a-C Nanocomposite Coatings

Journal

TRIBOLOGY LETTERS
Volume 41, Issue 1, Pages 97-101

Publisher

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s11249-010-9691-4

Keywords

Roughness; Friction; Hardness; Nanocomposite coating

Ask authors/readers for more resources

Influence of surface roughness on the friction of TiC/a-C nanocomposite coatings while sliding against bearing steel balls in humid air was examined by detailed analyses of the wear surfaces and the wear scar on the ball counterparts by atomic force microscopy, optical, and confocal microscopy. It was observed that the surface roughness of the coatings essentially determines the wear behavior of the ball counterpart, which consequently influences the transfer film formation. A rough coating causes abrasive wear of the steel ball during the running-in period, which impedes the formation of a stable transfer film and leads to higher values of coefficient of friction (CoF). Moreover, the CoF does not show a decreasing trend after the running-in period, although the roughness of the coating was greatly reduced. Replacing the worn ball with a new one after the running-in period yields lower CoF values similar to that observed for a smooth coating. In both of the cases, no wear of the steel ball occurs and a stable transfer film forms and effectively covers the contact area. The influence of the wear debris on the formation of the transfer film is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available