4.4 Article

A Novel Technique to Identify Hot Zones for Active Commuters' Crashes

Journal

TRANSPORTATION RESEARCH RECORD
Volume 2672, Issue 38, Pages 266-276

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0361198118786829

Keywords

-

Ask authors/readers for more resources

This paper presents an approach to identify and rank accident-prone (hot) zones for active transportation modes. The approach aims to extend the well-known empirical Bayes (EB) potential for safety improvement (PSI) method to cases where multiple crash modes are modeled jointly (multivariate modeling). In this study, crash modeling was pursued with a multivariate model, incorporating spatial effects, using the full Bayes (FB) technique. Cyclist and pedestrian crash data for the City of Vancouver (British Columbia, Canada) were analyzed for 134 traffic analysis zones (TAZs) to detect active transportation hot zones. The hot zones identification (HZID) process was based on the estimation of the Mahalanobis distance, which can be considered an extension to the PSI method in the context of multivariate analysis. In addition, a negative binomial model was developed for cyclist and pedestrian crashes, where the EB PSI for each mode crash was quantified. The cyclist and pedestrian PSIs were combined to detect active transportation hot zones. Overall, the Mahalanobis distance method is found to outperform the PSI method in terms of consistency of results; and discrepancy is observed between the hot zones identified using both approaches.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available