4.7 Article

Statistical modeling of Electric Vehicle electricity consumption in the Victorian EV Trial, Australia

Journal

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.trd.2014.08.017

Keywords

Electric vehicle; Charge event; Statistical modeling

Funding

  1. CSIRO Energy Transformed Flagship
  2. Victorian State Government Department of Transport, Planning and Local Infrastructure (DTPLI)

Ask authors/readers for more resources

The market share of Electric Vehicles (EVs), an attractive alternative to conventional vehicles, is expected to exceed 30% of all vehicles by 2033 in Australia. Although the expected EV uptake may place greater burdens on electricity networks, the potential impacts contributed by different EV user categories and vehicle models to peak loads at different times during the day are not well understood. This paper addresses the issue through statistical analysis of the charge events in the Victorian EV Trial in Australia as well as modeling the charging behaviors according to participant categories and vehicle models. The analysis was performed on 4933 charge events that were recorded by both private and public Electric Vehicle Supply Equipment. In total, these events consumed over 33 MW h of energy over 12,170 h by the 178 trial participants, out of which about 70% were household participants while the others were fleet participants. Based on a range of EV uptake scenarios and modeled charging behaviors from the trial, the power demand in the summer of 2032/33 was estimated for all of Victoria. The results of the simulations show that the broad scale uptake of EVs produces a relatively small increase in overall power demand (estimated to be between 5.72% and 9.79% in 2032/33). Crown Copyright (C) 2014 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available