4.5 Review

Targeting Nrf2-Keap1 signaling for chemoprevention of skin carcinogenesis with bioactive phytochemicals

Journal

TOXICOLOGY LETTERS
Volume 229, Issue 1, Pages 73-84

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2014.05.018

Keywords

Skin cancer; Phytochemicals; Nrf2; Heme oxygenase-1; Chemoprevention; Antioxidant response elements

Categories

Ask authors/readers for more resources

The incidence of skin cancer is increasing worldwide. Over the last several decades, attention has been focused on understanding the molecular basis of skin carcinogenesis and identifying substances for use in chemoprevention of skin cancer. Reactive oxygen species generated by chemical carcinogens or UV irradiation play a key role in skin tumorigenesis. Multiple lines of evidence suggest that cellular antioxidant and/or phase-2 detoxification enzymes, collectively known as cytoprotective proteins, can protect against skin carcinogenesis. A redox sensitive transcription factor, nuclear factor-erythroid related factor-2 (Nrf2), is a master regulator of transcriptional activation of genes encoding cytoprotective proteins. Many chemopreventive phytochemicals are known to activate Nrf2 either by oxidative or covalent modification of its cytosolic repressor Kelch-like ECH-associated protein (Keap1) or by phosphorylation of Nrf2. Upon activation, Nrf2 translocates to the nucleus and binds to the antioxidant response element (ARE) located in the promoter regions of genes encoding cytoprotective proteins. Mice genetically deficient in Nrf2 are highly susceptible to chemically induced skin tumorigenesis and are less responsive to the cytoprotective effects of some chemopreventive phytochemicals. This article highlights the Nrf2-ARE signaling as a prime target for chemoprevention of skin cancer with some phytochemicals. (C) 2014 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available