4.5 Article

Aldo-keto reductase 7A5 (AKR7A5) attenuates oxidative stress and reactive aldehyde toxicity in V79-4 cells

Journal

TOXICOLOGY IN VITRO
Volume 28, Issue 4, Pages 707-714

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tiv.2014.02.010

Keywords

Aldoketo reductase 7A5; Oxidative stress; Hydrogen peroxide; Menadione; Aldehydes

Categories

Funding

  1. Science and Technology Planning Project of Liaoning Province, China [2012225021]

Ask authors/readers for more resources

Aldo-keto reductase (AKR) enzymes are critical in the detoxification of endogenous and exogenous aldehydes. In previous studies, we have shown that AKR7A5 enzyme is catalytically active towards aldehydes arising from lipid peroxidation (LPO) and that it can significantly protect against 4-hydroxynonenal-induced apoptosis, suggesting a protective role against the consequences of oxidative stress. The aim of this study was to elucidate the cytoprotective effect of AKR7A5 against oxidative stress using a transgenic mammalian cell line expressing AKR7A5. Results show that expression of AKR7A5 in V79-4 cells provides significant protection against the cytotoxicity of H2O2 and menadione, with its expression altering the IC50 of H2O2 from 1.1 to 2.3 mM and the IC50 of menadione from 8.6 to 9.6 mu M, thus providing direct evidence for its anti-oxidant activity. Cells expressing AKR7A5 were also found to be more resistant to several LPO-derived aldehydes - trans-2-nonenal, hexanal and methylglyoxal. In addition the ability of AKR7A5 to enable the cells to cope with ROS accumulation and glutathione depletion was assessed. V79-4 cells overexpressing AKR7A5 were able to lower cellular ROS levels following treatment with H2O2 and menadione. AKR7A5 was also able to maintain cellular glutathione homeostasis in the presence of H2O2 and menadione. These findings indicate the importance of AKR7A5 in protecting cells from the damaging effects of oxidative stress, and that this cytoprotective function is carried out through multiple pathways. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Toxicology

Assessment of the utility of the novel Phenion® full thickness human skin model for detecting the skin irritation potential of antimicrobial cleaning products

Kathryn Page, Walter Westerink, Kristie Sullivan, Thomas McDonald, Clive Roper

Summary: This study developed a new method to assess the skin irritation of antimicrobial cleaning products. The method utilized a more human-like model and demonstrated its effectiveness through comparison with in vivo rabbit skin irritation data.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

In vitro anticancer effects of recombinant anisoplin through activation of SAPK/JNK and downregulation of NFκB

Arupam Patra, Thirukumaran Kandasamy, Siddhartha Sankar Ghosh, Gurvinder Kaur Saini

Summary: This study successfully produced recombinant anisoplin and demonstrated its significant anti-cancer effect and ability to induce apoptosis in breast cancer cells. The activation of related signaling pathways may be the key to cell death.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Life cell imaging of amiodarone sequestration into lamellar bodies of alveolar type II cells

Thomas Haller, Alexander Jesacher, Alberto Hidalgo, Christina Schmidt

Summary: This study used live cell imaging to observe the accumulation of amiodarone in primary rat alveolar type II cells, and found that it specifically accumulates in lamellar bodies. The uptake is rapid, while storage is persistent. The main mechanisms for intracellular bioaccumulation of amiodarone are proposed to be passive diffusion, ion-trapping, and lipophilic interactions.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Cucurbitacin B and erastin co-treatment synergistically induced ferroptosis in breast cancer cells via altered iron-regulating proteins and lipid peroxidation

Filiz Bakar-Ates, Erva Ozkan

Summary: This study investigated the ferroptotic effect of CuB in breast cancer cells and evaluated its combination with erastin, a ferroptosis inducer. The results showed that the combination treatment significantly activated the ferroptotic pathways and altered the expression of iron-related proteins in breast cancer cells.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

The use of in silico molecular modelling to screen potential estrogen mimics as part of medicines and agrochemicals development and product license applications.

Rachel Z. Bennie, Ian C. Shaw

Summary: Estrogen mimics are synthetic and naturally occurring compounds that can interact with estrogen receptors in animals. In vitro transactivation reporter gene assay and in silico molecular modelling can be used to predict the mimicry of these compounds, reducing reliance on animal studies.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Impacts of high-dose riboflavin on cytotoxicity, antioxidant, growth, reproductive gene expressions, and genotoxicity in the rainbow trout gonadal cells

Sevda Isik, Semra Cicek

Summary: This study found that high doses of riboflavin can cause cytotoxicity in rainbow trout gonad cells and affect the transcriptional expressions of antioxidant enzymes and growth and reproductive genes, potentially leading to DNA damage and cell death.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

m-Cresol,a pesticide intermediate, induces hepatotoxicity and behavioral abnormalities in zebrafish larvae through oxidative stress, apoptosis

Ying Wang, Jie Wu, Mengqi Wan, Dou Yang, Fasheng Liu, Kehao Li, Manxin Hu, Yuanyuan Tang, Huiqiang Lu, Shouhua Zhang, Yuanzhen Xiong

Summary: m-Cresol is commonly used as an intermediate for pesticides and other industrial applications. This study investigated the hepatotoxicity of m-cresol using zebrafish larvae and explored its molecular mechanisms. The results suggest that m-cresol may induce liver damage in zebrafish larvae through oxidative stress and cell apoptosis pathways.

TOXICOLOGY IN VITRO (2024)

Article Toxicology

Utilizing primary human airway mucociliary tissue cultures to model ramifications of chronic E-cigarette usage

Vincent J. Manna, Shannon Dwyer, Vanessa Pizutelli, Salvatore J. Caradonna

Summary: The widespread use of electronic cigarettes and the emergence of a new illness have raised concerns about the effects of e-cigarette vapor on respiratory tissues. Researchers have developed a simple device to mimic the response of human airway tissue after long-term exposure to e-cigarette vapor, and have identified differences in the effects of different vapor compositions on airway tissue.

TOXICOLOGY IN VITRO (2024)