4.6 Article

Distinct Genetic Alterations in the Mitogen-Activated Protein Kinase Pathway Dictate Sensitivity of Thyroid Cancer Cells to Mitogen-Activated Protein Kinase Kinase 1/2 Inhibition

Journal

THYROID
Volume 19, Issue 8, Pages 825-835

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/thy.2008.0362

Keywords

-

Funding

  1. American Thyroid Association and the Thyroid Head and Neck Cancer Foundation [NCI K12 CA 086913, NCI CA100560]
  2. Mary Rossick Kern and Jerome H Kern Endowment
  3. NIH [P30 CA 046934]

Ask authors/readers for more resources

Background: The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway plays an important role in papillary and anaplastic thyroid cancer (PTC and ATC) due to activating mutations in BRAF, RAS, or rearrangements in RET/PTC1. The objective of this study was to thoroughly test whether the BRAF V600E mutation predicts response to mitogen-activated protein kinase kinase 1/2 (MKK1/2) inhibition, as shown in other tumor types, using an authenticated panel of thyroid cancer cell lines. Methods: PTC and ATC cells harboring distinct mutations in the MAPK pathway were treated with two different inhibitors selective for MKK1/2 (CI-1040 or U0126). The consequences of MKK1/2 inhibition on cell growth, survival, invasion, and MAPK signaling was determined. Results: Inhibition of MKK1/2 using CI-1040 or U0126 differentially inhibits the growth of a panel of PTC and ATC cell lines in two-dimensional culture, with those harboring the BRAF V600E mutation (SW1736) or BRAF-V600E/PI3K-E542K mutations (K1) being the most sensitive, the RET/PTC1 rearrangement (TPC1) and BRAF V600E mutant (BCPAP), intermediate, and the HRAS-G13R mutant (C643), the least sensitive. Growth of these cells is more sensitive to MKK1/2 inhibition when grown in 2% versus 10% serum. Baseline levels of phospho-ERK1/2 were similar in all of the cell lines, and inhibition phospho-ERK1/2 did not predict sensitivity to MKK1/2 inhibition. When cells are grown in three-dimensional culture, MKK1/2 inhibition of growth correlates with mutational status (BRAF > RET/PTC1 > RAS). Finally, PTC and ATC invasiveness is differentially inhibited by CI-1040, which is independent of tumor type or mutation present. Conclusions: Different mutations in the MAPK pathway play distinct roles in the growth and invasion of thyroid cancer cells. These results indicate that MKK1/2 inhibitors have the potential to inhibit thyroid cancer growth and invasion, but that responses differ based on mutation status and growth conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available