4.7 Article

Large deflection analysis of flexible plates by the meshless finite point method

Journal

THIN-WALLED STRUCTURES
Volume 48, Issue 3, Pages 200-214

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.tws.2009.11.001

Keywords

Finite point method; Meshless methods; Flexible plates

Ask authors/readers for more resources

The classical finite difference technique and methods based on series expansions can only be adopted for solving plates with simple geometry, loading and boundary conditions. In contrast, the finite element method has been widely used for general analysis of bending and flexible plates (coupled bending and in-plane effects). Lack of stress continuity and relatively expensive mesh generation and remeshing schemes have led to the emergence of meshless methods, such as the finite point method (FPM). FPM is a strong form solution which combines the moving least square interpolation technique on a domain of irregularly distributed points with a point collocation scheme to derive system governing equations. In this study, coupled nonlinear partial differential equations of fourth order are solved to analyse large deflection behaviour of plates subjected to lateral and in-plane loadings. Several plate problems are solved and compared with analytical solution and other available numerical results to assess the performance of the proposed approach. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available