4.2 Article

Recent applications and developments of charge equilibration force fields for modeling dynamical charges in classical molecular dynamics simulations

Journal

THEORETICAL CHEMISTRY ACCOUNTS
Volume 131, Issue 3, Pages -

Publisher

SPRINGER
DOI: 10.1007/s00214-012-1153-7

Keywords

Force field; Molecular dynamics simulations; Quantum mechanics; Polarizable; Charge equilibration

Ask authors/readers for more resources

With the continuing advances in computational hardware and novel force fields constructed using quantum mechanics, the outlook for non-additive force fields is promising. Our work in the past several years has demonstrated the utility of polarizable force fields, in our hands those based on the charge equilibration formalism, for a broad range of physical and biophysical systems. We have constructed and applied polarizable force fields for small molecules, proteins, lipids, and lipid bilayers and recently have begun work on carbohydrate force fields. The latter area has been relatively untouched by force field developers with particular focus on polarizable, non-additive interaction potential models. In this review of our recent work, we discuss the formalism we have adopted for implementing the charge equilibration method for phase-dependent polarizable force fields, lipid molecules, and small-molecule carbohydrates. We discuss the methodology, related issues, and briefly discuss results from recent applications of such force fields.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available