4.5 Article

Eddy covariance CO2 flux above a Gmelin larch forest on continuous permafrost in Central Siberia during a growing season

Journal

THEORETICAL AND APPLIED CLIMATOLOGY
Volume 93, Issue 3-4, Pages 133-147

Publisher

SPRINGER WIEN
DOI: 10.1007/s00704-007-0337-x

Keywords

-

Funding

  1. Sukachev Institute of Forest
  2. Evenki Forest Management Agency
  3. Global environment research fund S-1'' [FY2002-2006]

Ask authors/readers for more resources

Gmelin larch ( Larix gmelinii) forests are representative vegetation in the continuous permafrost region of Central Siberia. Information on the carbon budget is still limited for this Siberian larch taiga in comparison to boreal forests in other regions, while the larch forests are expected to play a key role in the global carbon balance due to their wide distribution over North-East Eurasia. The authors reported results of eddy covariance CO2 flux measurements at a mature Gmelin larch stand in Central Siberia, Russia (64 degrees 16'N, 100 degrees 12'E, 250m a.s.l.). The measurements were conducted during one growing season (June-early September in 2004). CO2 uptake was initiated in early June and increased sharply until late June, which was closely related to the phenology of the larch trees (i.e., bud-break and needle flush). Maximum half-hourly net CO2 uptake was similar to 6 mu mol m(-2) s(-1). Maximum daily net uptake of similar to 2 g C m(-2) day(-1) occurred at the end of June and in mid-July. Cumulative net uptake was 76-78 g C m(-2), indicating that the mature larch forest acted as a net sink for CO2 during the growing season (91 days). In comparison with other boreal forests, however, the magnitude of net CO2 uptake and night-time release of the forest, and cumulative net CO2 uptake were lower. We suggest that lower net ecosystem CO2 uptake of the study stand was primarily associated with low leaf area index.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available