4.4 Article

Acceleration effect of allylic hydroxy group on ring-closing enyne metathesis of terminal alkynes: scope and application to the synthesis of isofagomine

Journal

TETRAHEDRON LETTERS
Volume 49, Issue 2, Pages 265-267

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.tetlet.2007.11.098

Keywords

-

Ask authors/readers for more resources

An interesting allylic substituent effect on ring-closing enyne metathesis has been found. An allylic hydroxy group on enyne substrates accelerates ring-closing enyne metathesis of terminal alkynes. The reaction proceeds smoothly without ethylene atmosphere and/or more reactive newer generation Ru-carbene catalysts, which are generally necessary to promote the reaction. This efficient reaction was applied to the synthesis of isofagomine. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Chemistry, Organic

Pyrrolidine-based C1-symmetric chiral transition metal complexes as catalysts in the asymmetric organic transformations

Geeta Devi Yadav, Pooja Chaudhary, Balaram Pani, Surendra Singh

Summary: Chiral transition metal complexes with privileged ligands are efficient catalysts for various asymmetric organic transformations. Transition metal complexes of C1-symmetric pyrrolidine-based ligands have been widely used in asymmetric organic reactions. However, a comprehensive review article on the transition metal complexes of chiral C1-symmetric pyrrolidine-based ligands derived from (L)-proline has not been published.

TETRAHEDRON LETTERS (2024)