4.5 Article

Implantation of c-mycERTAM Immortalized Human Mesencephalic-Derived Clonal Cell Lines Ameliorates Behavior Dysfunction in a Rat Model of Parkinson's Disease

Journal

STEM CELLS AND DEVELOPMENT
Volume 18, Issue 2, Pages 307-319

Publisher

MARY ANN LIEBERT INC
DOI: 10.1089/scd.2008.0078

Keywords

-

Funding

  1. Michael J. Fox Foundation for Parkinson's Research.

Ask authors/readers for more resources

Human neural stem cells offer the hope that a cell therapy treatment for Parkinson's disease (PD) could be made widely available. In this study, we describe two clonal human neural cell lines, derived from two different 10-week-old fetal mesencephalic tissues and immortalized with the c-mycER(TAM) transgene. Under the growth control of 4-hydroxytamoxifen, both cell lines display stable long-term growth in culture with a normal karyotype. In vitro, these nestin-positive cells are able to differentiate into tyrosine hydroxylase (TH)-positive neurons and are multipotential. Implantation of the undifferentiated cells into the 6-OHDA substantia nigral lesioned rat model displayed sustained improvements in a number of behavioral tests compared with noncell-implanted, vehicle-injected controls over the course of 6 months. Histological analysis of the brains showed survival of the implanted cells but no evidence of differentiation into TH-positive neurons. An average increase of approximately 26% in host TH immunoreactivity in the lesioned dorsal striatum was observed in the cell-treated groups compared to controls, with no difference in loss of TH cell bodies in the lesioned substantia nigra. Further analysis of the cell lines identified a number of expressed trophic factors, providing a plausible explanation for the effects observed in vivo. The exact mechanisms by which the implanted human neural cell lines provide behavioral improvements in the PD model are not completely understood; however, these findings provide evidence that cell therapy can be a potent treatment for PD acting through a mechanism independent of dopaminergic neuronal cell replacement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available