4.5 Article

A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification

Journal

STATISTICS IN MEDICINE
Volume 31, Issue 2, Pages 143-154

Publisher

WILEY-BLACKWELL
DOI: 10.1002/sim.4405

Keywords

longitudinal data; prediction; random effects distribution

Funding

  1. National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development

Ask authors/readers for more resources

The use of longitudinal data for predicting a subsequent binary event is often the focus of diagnostic studies. This is particularly important in obstetrics, where ultrasound measurements taken during fetal development may be useful for predicting various poor pregnancy outcomes. We propose a modeling framework for predicting a binary event from longitudinal measurements where a shared random effect links the two processes together. Under a Gaussian random effects assumption, the approach is simple to implement with standard statistical software. Using asymptotic and simulation results, we show that estimates of predictive accuracy under a Gaussian random effects distribution are robust to severe misspecification of this distribution. However, under some circumstances, estimates of individual risk may be sensitive to severe random effects misspecification. We illustrate the methodology with data from a longitudinal fetal growth study. Copyright (C) 2011 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available