4.6 Article

Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks

Journal

STATISTICAL METHODS IN MEDICAL RESEARCH
Volume 24, Issue 2, Pages 206-223

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0962280211414853

Keywords

autoregressive modelling; Bayesian inference; hidden Markov models; influenza; public health; temporal surveillance

Funding

  1. Conselleria de Sanitat of the Generalitat Valenciana (the Valencian Regional Health Authority)
  2. Ministerio de Educacion y Ciencia (the Spanish Ministry of Education and Science) [MTM2007-61554, MTM2010-19528, FUT-C2-0047]
  3. European Regional Development Fund
  4. Generalitat Valenciana [EVES-015/2008]

Ask authors/readers for more resources

Considerable effort has been devoted to the development of statistical algorithms for the automated monitoring of influenza surveillance data. In this article, we introduce a framework of models for the early detection of the onset of an influenza epidemic which is applicable to different kinds of surveillance data. In particular, the process of the observed cases is modelled via a Bayesian Hierarchical Poisson model in which the intensity parameter is a function of the incidence rate. The key point is to consider this incidence rate as a normal distribution in which both parameters (mean and variance) are modelled differently, depending on whether the system is in an epidemic or non-epidemic phase. To do so, we propose a hidden Markov model in which the transition between both phases is modelled as a function of the epidemic state of the previous week. Different options for modelling the rates are described, including the option of modelling the mean at each phase as autoregressive processes of order 0, 1 or 2. Bayesian inference is carried out to provide the probability of being in an epidemic state at any given moment. The methodology is applied to various influenza data sets. The results indicate that our methods outperform previous approaches in terms of sensitivity, specificity and timeliness.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available