4.6 Article

Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: Comparative study to 3D IVUS and 3D QCA

Journal

ATHEROSCLEROSIS
Volume 240, Issue 2, Pages 510-519

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.atherosclerosis.2015.04.011

Keywords

Optical Coherence Tomography; Intravascular Ultrasound; Quantitative Coronary Angiography; Shear Stress; Method comparison study

Funding

  1. European Commission [249303]
  2. Behrakis Foundation, Boston, USA
  3. General Secretariat of Research and Technology, Program: Heracleitus II, Athens, Greece
  4. National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, USA [K01-EB015868]

Ask authors/readers for more resources

Background: Geometrically-correct 3D OCT is a new imaging modality with the potential to investigate the association of local hemodynamic microenvironment with OCT-derived high-risk features. We aimed to describe the methodology of 3D OCT and investigate the accuracy, inter-and intra-observer agreement of 3D OCT in reconstructing coronary arteries and calculating ESS, using 3D IVUS and 3D QCA as references. Methods-Results: 35 coronary artery segments derived from 30 patients were reconstructed in 3D space using 3D OCT. 3D OCT was validated against 3D IVUS and 3D QCA. The agreement in artery reconstruction among 3D OCT, 3D IVUS and 3D QCA was assessed in 3-mm-long subsegments using lumen morphometry and ESS parameters. The inter-and intra-observer agreement of 3D OCT, 3D IVUS and 3D QCA were assessed in a representative sample of 61 subsegments (n - 5 arteries). The data processing times for each reconstruction methodology were also calculated. There was a very high agreement between 3D OCT vs. 3D IVUS and 3D OCT vs. 3D QCA in terms of total reconstructed artery length and volume, as well as in terms of segmental morphometric and ESS metrics with mean differences close to zero and narrow limits of agreement (BlandeAltman analysis). 3D OCT exhibited excellent inter-and intra-observer agreement. The analysis time with 3D OCT was significantly lower compared to 3D IVUS. Conclusions: Geometrically-correct 3D OCT is a feasible, accurate and reproducible 3D reconstruction technique that can perform reliable ESS calculations in coronary arteries. (C) 2015 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available