4.6 Article

Imaging quality and diagnostic reliability of low-dose computed tomography lumbar spine for evaluating patients with spinal disorders

Journal

SPINE JOURNAL
Volume 14, Issue 11, Pages 2682-2690

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.spinee.2014.03.007

Keywords

Computed tomography; Diagnostic reliability; Imaging quality iterative reconstruction; Lumbar spine; Patient safety; Radiation

Funding

  1. Taipei Veterans General Hospital [V102C-044]

Ask authors/readers for more resources

BACKGROUND CONTEXT: Computed tomography (CT) scans of the lumbar spine (CTLS) have demonstrated a higher level of accuracy than plain films and have been used to assess patients with spinal disorder when magnetic resonance imaging is not available. Nevertheless, radiation exposure remains a serious safety concern. Iterative reconstruction (IR) decreases the CT radiation dose for diagnostic imaging. However, the feasibility of using IR in CTLS is unclear. PURPOSE: To evaluate the imaging quality and diagnostic reliability of CTLS with IR. STUDY DESIGN: A prospective study. PATIENT SAMPLE: All patients from outpatient departments who suffered from spinal disorders and were referred for CTLS. OUTCOME MEASURES: In acquired CT images, the signal-to-noise ratio (SNR) of the dural sac (DS), intervertebral disc (IVD), psoas muscle (PM), and L5 vertebral body, the contrast-to-noise ratio between the DS and IVD (D-D CNR), and the subjective imaging qualities were compared across groups. Interobserver agreement was evaluated with kappa values. METHODS: Patients receiving low radiation CTLS were divided into three groups. A 150 mAs tube current with 120 kVp tube voltage was used with Group A and a 230 mAs tube current with 100 kVp tube voltage with Group B. Intended end radiation exposure was 50% less than that of the control group. Tube modulation was active for all groups. The images of the two low-radiation groups were reconstructed by IR; those of the control group by filtered back-projection (FBP). RESULTS: The SNRs of the DS, IVD, PM, BM, and D-D CNR of Group A were not inferior to those of the control group. All SNRs and D-D CNRs for Group B were inferior to those of the control group. Except for that of the facet joint, all subjective imaging ratings for anatomic regions were equivalent between Groups A and B. Interobserver agreement was highest for the control group (0.72-0.88), followed by Group A (0.69-0.83) and B (0.55-0.83). CONCLUSIONS: Fifty percent tube current reduction combined with IR provides equivalent diagnostic accuracy and improved patient safety when compared with conventional CTLS. Our results support its use as a screening tool. With the tube modulation technique, further adjustments in weighting IR and FBP algorithms based on body mass index become unnecessary. (C) 2014 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available