4.5 Article

A New Porcine In Vivo Animal Model of Disc Degeneration Response of Anulus Fibrosus Cells, Chondrocyte-Like Nucleus Pulposus Cells, and Notochordal Nucleus Pulposus Cells to Partial Nucleotomy

Journal

SPINE
Volume 34, Issue 25, Pages 2730-2739

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/BRS.0b013e3181b723c9

Keywords

disc degeneration model; nucleotomy; porcine; notochordal cells

Funding

  1. Orthopedic University Hospital, Heidelberg, Germany

Ask authors/readers for more resources

Study Design. In vivo animal study. Objectives. To describe a new porcine disc degeneration model, and to analyze disc remodeling and degeneration after nucleotomy with special view to the different nucleus pulposus (NP) cell types. Summary of Background Data. Thus far, predominantly smaller animals were used for disc degeneration models; however, such small discs were inappropriate to investigate cell implementation therapies. Though notochordal cells (NCs) are important for disc formation and maintenance, differences in the amount of NCs between human and animal discs have often been neglected. Methods. Twenty-four Goettingen minipigs underwent partial nucleotomy with a 16G biopsy cannula, to remove similar to 10% of total NP volume. Animals were followed up for 3, or 24 weeks and analyzed by radiographs, MRIs, (immuno) histology, gene expression analysis, and bio-mechanical testing. Results. Three weeks after nucleotomy disc height was reduced by 26%, and magnetic resonance imaging signal intensity by 40%. At 24 weeks disc height was decreased by 32%. Increased degenerative changes were found in a histodegeneration score 3 and 24 weeks after nucleotomy, as well as considerable NP scarification after 3 weeks. In controls, cytokeratin-8 immunohistochemistry identified NCs in proximity to chondrocyte-like NP cells at approximately equal ratio. After nucleotomy, NCs were considerably reduced to similar to 10% of total NP cells. Matrix genes were upregulated, except for aggrecan that decreased to 35% of initial values 3 weeks after nucleotomy. Matrix degrading factors (matrix metalloproteinases 13 and 3) were continuously upregulated, whereas transcripts of their inhibitors (tissue inhibitors of matrix metalloproteinase 2 and 3) were downregulated. No significant changes in segmental spinal flexibility or bone density were found after nucleotomy. Conclusion. We introduced a new disc degeneration model with relatively large discs that could be used for cell therapeutic approaches. The study gives further information about disc remodeling after nucleotomy and indicates the relevance of an altered cellular composition for the development of disc degeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available