4.7 Article

The influence of oxygen on the microstructural, optical and photochromic properties of polymer-matrix, tungsten-oxide nanocomposite films

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 120, Issue -, Pages 102-108

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2013.08.023

Keywords

Photochromic; Tungsten-oxide nanocomposite; In situ vapor deposition

Ask authors/readers for more resources

An in situ vapor deposition process has been used to create a photochromic, tungsten-oxide, polymer matrix nanocomposite. Under specific processing conditions, the composite consists of discrete tungsten-oxide nanoparticles distributed uniformly throughout the bulk of an optically transparent fluoropolymer matrix. Ultraviolet exposure of the nanocomposite produces characteristic photochromic changes that result in a 40% change in optical transmission. Optical absorption measurements yield a value of 3.08 eV for the bandgap of the tungsten-oxide particles. Incorporating oxygen as a supplementary deposition agent in the synthesis process increased the transparency of the films in the visible region, increased the change in transmission due to the photochromic effect, and led to the percolation of larger nanoparticles near the film surface. Growth of particles in this region allowed the nanocomposite to be bleached readily in an oxygen atmosphere while retaining photochromic activity. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Materials Science, Multidisciplinary

Synthesis and characterization of binder-free Cr3C2 coatings on nickel-based alloys for molten fluoride salt corrosion resistance

Michael C. Brupbacher, Dajie Zhang, William M. Buchta, Mark L. Graybeal, Yo-Rhin Rhim, Dennis C. Nagle, James B. Spicer

JOURNAL OF NUCLEAR MATERIALS (2015)

Article Materials Science, Coatings & Films

Post-treatment of Plasma-Sprayed Cr2O3 with Methane-Containing Gas for Conversion to Binder-Free Cr3C2

Michael C. Brupbacher, Dajie Zhang, William M. Buchta, Yo-Rhin Rhim, Dennis C. Nagle, James B. Spicer

JOURNAL OF THERMAL SPRAY TECHNOLOGY (2015)

Article Materials Science, Multidisciplinary

Laser ultrasonic assessment of the effects of porosity and microcracking on the elastic moduli of nuclear graphites

James B. Spicer, Lauren R. Olasov, Fan W. Zeng, Karen Han, Nidia C. Gallego, Cristian I. Contescu

JOURNAL OF NUCLEAR MATERIALS (2016)

Article Materials Science, Multidisciplinary

Elastic wavefield interactions with solute species during precipitation processes in solids

James B. Spicer, Yamac Dikmelik

ACTA MATERIALIA (2009)

Article Mechanics

Effects of the Nonlinear Elastic Behavior of Bicycle Chain on Transmission Efficiency

James B. Spicer

JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME (2013)

Article Physics, Applied

Dynamic effects in nonlinearly coupled elastic deformation and diffusion fields in solids

J. B. Spicer, Y. Dikmelik

JOURNAL OF APPLIED PHYSICS (2008)

Article Chemistry, Physical

Photoinduced Silver Precursor Decomposition for Particle Modification in Tungsten Oxide-Polymer Matrix Nanocomposites

Travis J. DeJournett, James B. Spicer

JOURNAL OF PHYSICAL CHEMISTRY C (2014)

Article Acoustics

Laser ultrasonic inspection of the microstructural state of thin metal foils

O. Balogun, R. Huber, D. Chinn, J. B. Spicer

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA (2009)

Review Chemistry, Analytical

Ultrafast Laser-Based Spectroscopy and Sensing: Applications in LIBS, CARS, and THz Spectroscopy

Megan R. Leahy-Hoppa, Joseph Miragliotta, Robert Osiander, Jennifer Burnett, Yamac Dikmelik, Caroline McEnnis, James B. Spicer

SENSORS (2010)

Proceedings Paper Engineering, Electrical & Electronic

Linear and Nonlinear Optical Processing of Polymer Matrix Nanocomposites

Travis J. DeJournett, Karen Han, Lauren R. Olasov, Fan W. Zeng, Brennan Lee, James B. Spicer

NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XII (2015)

Proceedings Paper Engineering, Electrical & Electronic

Characterization of nuclear graphite elastic properties using laser ultrasonic methods

Fan W. Zeng, Karen Han, Lauren R. Olasov, Nidia C. Gallego, Cristian I. Contescu, James B. Spicer

THERMOSENSE: THERMAL INFRARED APPLICATIONS XXXVII (2015)

Proceedings Paper Optics

Detection of microwave emission from solid targets ablated with an ultrashort pulsed laser

Joseph A. Miragliotta, Benjamin Brawley, Caroline Sailor, James B. Spicer, Jane W. M. Spicer

LASER RADAR TECHNOLOGY AND APPLICATIONS XVI (2011)

Article Energy & Fuels

Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss

Shahriyar Safat Dipta, Md Habibur Rahaman, Walia Binte Tarique, Ashraful Hossain Howlader, Ayush Pratik, John A. Stride, Ashraf Uddin

Summary: Implementing a double-sided passivation approach can enhance the performance of n-i-p structured PSCs and improve the stability and photovoltaic properties of the cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Paste-based silver reduction for iTOPCon rear side metallization

Daniel Ourinson, Andreas Brand, Andreas Lorenz, Marwan Dhamrin, Sebastian Tepner, Michael Linse, Nathalie Goettlicher, Kosuke Tsuji, Jonas D. Huyeng, Florian Clement

Summary: This work presents two approaches to reduce the amount of silver on the rear side of M2-sized industrial iTOPCon solar cells. The Cu-based approach shows promise with similar power conversion efficiency compared to the conventional approach, while the Al-based approach exhibits some limitations but demonstrates the potential of such type of contact for iTOPCon solar cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Screen printable copper pastes for silicon solar cells

Abasifreke Ebong, Donald Intal, Sandra Huneycutt, Thad Druffel, Ruvini Dharmadasa, Kevin Elmer, Apolo Nambo

Summary: This study demonstrates the successful metallization of a PERC silicon solar cell using screen-printable copper (Cu) paste. The Cu paste contains antioxidant additives and diffusion inhibitors to prevent oxidation and diffusion of Cu. The Cu-printed cells achieved an efficiency of 19% and showed no Cu diffusion after characterization tests. The long-term stability and effectiveness of the Cu diffusion barrier were also confirmed.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Defining specifications for accurate Metal/TCO specific contact resistivity measurements by TLM in silicon heterojunction devices

Senami Zogbo, Wilfried Favre, Olivier Bonino, Marie-Estelle Gueunier-Farret

Summary: Measuring specific contact resistivity (pc) is crucial for interface engineering in high efficiency solar cells. The Transfer Length Method (TLM) is commonly used for evaluating layer sheet resistance (Rsheet) and pc, but it is not suitable for metal/Transparent Conductive Oxide (TCO) interface evaluation in silicon heterojunction (SHJ) cells. This study investigates the parameters that restrict current confinement within the TCO, including mid-gap trap density (Dit) at the a-Si:H/c-Si interface and the activation energy (Ea = Ec - EF) variation of a-Si:H contact layers.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules part I: Cell-ribbon mechanical interaction through the solder

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: The phenomenon of ribbon lengthening in PV modules exposed to thermal cycling is not well explained in the literature. In this study, a three layers model is proposed to explain this effect, and the predictions of the model are validated through finite element method simulations and experiments. The results show that the model predictions are consistent with the indirect measurements, but not with the direct measurements. Additionally, it is inferred that the encapsulant plays a role after the solder failure.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules, Part II: Glass-ribbon mechanical interaction through the encapsulant

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: This study investigates the problematic ribbon lengthening observed in PV modules exposed to high amplitude thermal cycling. A simplified system model is proposed and accurate predictions are obtained using the Finite Element Method. The results show that the thickness of the encapsulant has a substantial impact on the lengthening of the ribbons.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Gallium nanoparticles as antireflection structures on III-V solar cells

S. Catalan-Gomez, E. Martinez Castellano, M. Schwarz, M. Montes Bajo, L. Dorado Vargas, A. Gonzalo, A. Redondo-Cubero, A. Gallego Carro, A. Hierro, J. M. Ulloa

Summary: This study investigates the use of core-shell gallium nanoparticles as functional light scatterers on solar cells. By optimizing the nanoparticle size, the short-circuit current of the solar cells is significantly improved. The underlying physical mechanism is studied through optical measurements and simulations, and a method to reduce the plasmonic effect of the nanoparticles is demonstrated.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Highly reflective and passivated ohmic contacts in p-Ge by laser processing of aSiCx:H(i)/Al2O3/aSiC films for thermophotovoltaic applications

M. Gamel, G. Lopez, A. M. Medrano, A. Jimenez, A. Datas, M. Garin, I. Martin

Summary: In this study, a highly reflective ohmic contact to p-type c-Ge material is demonstrated, which can improve the efficiency of thermophotovoltaic devices. The experimental results show that this contact can simultaneously meet the requirements of good back surface passivation, low electrical resistivity, and high reflectivity. Moreover, simulations suggest that implementing these back contacts has the potential to achieve conversion efficiencies comparable to high-efficiency c-Ge TPV cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Improvement on solar selective absorption properties of anodic aluminum oxide photonic crystal films by electrodeposition of silver

Hongyang Wei, Qing Xu, Dongchu Chen, Min Chen, Menglei Chang, Xiufang Ye

Summary: This study prepared solar selective absorption films based on anodic aluminum oxide (AAO) photonic crystals using a unique electrodeposition method. The Co-Ag electrodeposited film exhibited superior solar selective absorption properties and thermal stability.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Optical absorption driven by efficient refraction and light concentration for photovoltaic applications

Ankit Kumar, Ankit Chauhan, Jordi Llobet, Helder Fonseca, Patricia C. Sousa, Carlos Calaza, Gil Shalev

Summary: This study found that decorating subwavelength arrays with SiO2 quasi-nanolenses (qNL arrays) can enhance the absorption of the solar spectrum. Optical absorption mechanisms in qNL arrays were investigated using near-field scanning optical microscopy (NSOM), revealing that the enhancement is a result of the combination of effective antireflection coating, increased optical interactions between adjacent dielectrics for elevated light trapping, and strong light concentration due to the presence of qNLs.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Progress on the reduction of silver consumption in metallization of silicon heterojunction solar cells

S. Pingel, T. Wenzel, N. Goettlicher, M. Linse, L. Folcarelli, J. Schube, S. Hoffmann, S. Tepner, Y. C. Lau, J. Huyeng, A. Lorenz, F. Clement

Summary: This study demonstrates the potential to reduce silver consumption in highly efficient SHJ cells through fine-line screen printing using low temperature paste with various screens. The results show that using finer mesh allows for narrower grid fingers and lower resistance, leading to improved cell efficiency. Simulation results indicate that module wire configuration is crucial for reducing silver consumption.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Efficient-thermal conductivity, storage and application of bionic tree-ring composite phase change materials based on freeze casting

Xibo He, Jun Qiu, Wei Wang, Yicheng Hou, Yong Shuai

Summary: This paper proposes a novel phase change material with high thermal conductivity and stability for fast photo-thermal conversion and storage. The experimental results demonstrate excellent durability and stability of the phase change material, with good performance in thermal conductivity and thermal storage efficiency.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Solar evaporation of liquid marbles with tunable nanowire array

Qingyuan Liu, Lin Wang, Zheng Liu, Guohua Liu

Summary: A new evaporating structure consisting of liquid marble with tunable nanowire array is proposed to enhance solar evaporation. The experiments show that the liquid marble with nanowire array exhibits outstanding evaporation performance, which has significant implications for seawater desalination or wastewater treatment.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Effects of different interface on the stability of hybrid heterojunction solar cells

Hao Liu, Qiming Liu, Jinpei Liu, Yonggang Zhao, Yingjie Yu, Yue An, Ganghui Wei, Yanzheng Li, Yujun Fu, Junshuai Li, Deyan He

Summary: Moisture in the air is identified as the main cause of performance degradation in organic-inorganic hybrid solar cells. Exposure to air leads to the growth of thin oxide layer on the interface and the formation of silver sulfide, increasing the series resistance and decreasing the fill factor, thus degrading the cell performance.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Refractive indices and extinction coefficients of p-type doped Germanium wafers for photovoltaic and thermophotovoltaic devices

E. Blanco, P. Martin, M. Dominguez, P. Fernandez-Palacios, I. Lombardero, C. Sanchez-Perez, I. Garcia, C. Algora, M. Gabas

Summary: This study addresses the lack of optical parameters for p-type Ge wafers by determining the complex refractive indices of commercial Ge wafers with varying doping levels. The obtained data successfully reproduces the critical points associated with interband transitions and absorption features below the bandgap. The refractive indices were validated through experimental measurements and solar cell simulations.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)