4.7 Article

The effect of dislocations on the efficiency of InGaN/GaN solar cells

Journal

SOLAR ENERGY MATERIALS AND SOLAR CELLS
Volume 117, Issue -, Pages 279-284

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2013.06.022

Keywords

GaN; InGaN; TEM characterization; EQE; Defects

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC) UK, Science Bridge Award scheme
  2. EPSRC [EP/H019324/1, EP/G042330/1, EP/I012591/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/H019324/1, EP/G042330/1, EP/I012591/1] Funding Source: researchfish

Ask authors/readers for more resources

Two solar cells based on an InGaN/GaN p-i-n hetero-junction, but having different dislocation densities, were fabricated and characterized. The structures were grown on c-plane (0001) GaN-on-sapphire templates with different threading dislocation (TD) densities of 5 x 10(8) and 5 x 10(9) cm(-2). Structural characterization revealed the presence of V-defects in the InGaN epilayer. Since each V-defect was associated with a TD, the structural as well as the optical properties worsened with a higher TO density in the GaN/sapphire template. It was also found that additional dislocations were generated in the p-GaN layer over the V-defects in the InGaN layer. Because of its superior structural quality, the peak external quantum efficiency (EQE) of the low TO density sample was three times higher than that of the high TD density sample. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Chemistry, Multidisciplinary

Mechanism study on organic ternary photovoltaics with 18.3% certified efficiency: from molecule to device

Yaokai Li, Yuan Guo, Zeng Chen, Lingling Zhan, Chengliang He, Zhaozhao Bi, Nannan Yao, Shuixing Li, Guanqing Zhou, Yuanping Yi, Yang (Michael) Yang, Haiming Zhu, Wei Ma, Feng Gao, Fengling Zhang, Lijian Zuo, Hongzheng Chen

Summary: This study systematically investigates the working mechanism of ternary blend organic photovoltaics based on non-fullerene acceptors (NFAs). Molecular dynamics simulations and morphology characterization reveal that the addition of larger band gap and highly miscible NFAs improves composition-dependent band gap and charge recombination, leading to enhanced power conversion efficiency.

ENERGY & ENVIRONMENTAL SCIENCE (2022)

Article Nanoscience & Nanotechnology

Hybridization and localized flat band in the WSe2/MoSe2 heterobilayer

Lama Khalil, Debora Pierucci, Emilio Velez-Fort, Jose Avila, Celine Vergnaud, Pavel Dudin, Fabrice Oehler, Julien Chaste, Matthieu Jamet, Emmanuel Lhuillier, Marco Pala, Abdelkarim Ouerghi

Summary: This study visualizes the presence of a flat band near the Fermi level in the van der Waals WSe2/MoSe2 heterobilayer and confirms the coexistence of different domains with arbitrary twist angles. The strong interlayer hybridization effects are observed, which are further confirmed by complementary micro-Raman spectroscopy measurements.

NANOTECHNOLOGY (2023)

Article Chemistry, Physical

Lattice Dynamics and Electron-Phonon Coupling in Double Perovskite Cs2NaFeCl6

Bin Zhang, Johan Klarbring, Fuxiang Ji, Sergei Simak, Igor A. Abrikosov, Feng Gao, Galyna Yu Rudko, Weimin M. Chen, Irina A. Buyanova

Summary: Phonon-phonon and electron/exciton-phonon coupling are found to play a vital role in the thermal, electronic, and optical properties of metal halide perovskites. Our study focuses on the evaluation of phonon anharmonicity and coupling between electronic and vibrational excitations in the novel material, Cs2NaFeCl6, through Raman measurements and theoretical calculations. The results highlight the significance of phonon-phonon and electron-phonon interactions in the electronic properties of Cs2NaFeCl6.

JOURNAL OF PHYSICAL CHEMISTRY C (2023)

Article Nanoscience & Nanotechnology

Unidirectional Rashba spin splitting in single layer WS2(1-x)Se2x alloy

Jihene Zribi, Debora Pierucci, Federico Bisti, Biyuan Zheng, Jose Avila, Lama Khalil, Cyrine Ernandes, Julien Chaste, Fabrice Oehler, Marco Pala, Thomas Maroutian, Ilka Hermes, Emmanuel Lhuillier, Anlian Pan, Abdelkarim Ouerghi

Summary: By characterizing the electronic properties of a single layer WS1.4Se0.6 alloy, researchers have discovered its unique anisotropic properties. The alloy exhibits a giant unidirectional Rashba spin splitting and in-plane polarization, which could have wide-ranging applications in future electronic, piezoelectric, and spintronic devices.

NANOTECHNOLOGY (2023)

Article Chemistry, Multidisciplinary

From optical pumping to electrical pumping: the threshold overestimation in metal halide perovskites

Jiajun Qin, Yang Tang, Jia Zhang, Tangyao Shen, Max Karlsson, Tiankai Zhang, Weidong Cai, Lei Shi, Wei-Xin Ni, Feng Gao

Summary: In this study, we evaluate the threshold carrier density of optically pumped lasers and find that the carrier cooling process in perovskites is slower than previously assumed. However, we observe that lower energy photon excitation speeds up the carrier cooling process and facilitates efficient carrier accumulation. By extrapolating the optical pumping threshold to band edge excitation, we obtain a critical threshold carrier density one order of magnitude lower than conventional estimates.

MATERIALS HORIZONS (2023)

Article Chemistry, Multidisciplinary

Air Processing of Thick and Semitransparent Laminated Polymer:Non-Fullerene Acceptor Blends Introduces Asymmetric Current-Voltage Characteristics

Xabier Rodriguez-Martinez, Paula Hartnagel, Sergi Riera-Galindo, Gulzada Beket, Thomas Osterberg, Feng Gao, Thomas Kirchartz, Olle Inganas

Summary: Non-fullerene acceptors have revolutionized indoor organic photovoltaics with high power conversion efficiencies, but transferring this performance to larger-scale prototyping remains challenging. The PM6:IO4Cl blend, a successful indoor OPV photoactive layer, is investigated for its industrial potential, and the thick and semitransparent devices are fabricated in air. Anomalous current-voltage characteristics are observed, with the cathode side generally outperforming the anode side due to a dead layer at the PAL/anode contact interface. Symmetric J-V curves and improved light utilization efficiency are achieved by making the PALs thin enough. Certain all-polymer and polymer:fullerene blends are identified as suitable candidates for thick device up-scaling, and ternary blends show potential in mitigating electrical asymmetry.

ADVANCED FUNCTIONAL MATERIALS (2023)

Article Optics

Sensitive near-infrared circularly polarized light detection via non-fullerene acceptor blends

Li Wan, Rui Zhang, Eunkyung Cho, Hongxiang Li, Veaceslav Coropceanu, Jean-Luc Bredas, Feng Gao

Summary: We propose a widely applicable strategy to fill the spectral gap of circularly polarized light (CPL) detection in the near-infrared (NIR) region by directly inducing chiroptical activity in planar non-fullerene acceptors. This strategy is found to be effective in a wide series of state-of-the-art non-fullerene acceptor families, including ITIC5, o-IDTBR6, and Y6 analogues.

NATURE PHOTONICS (2023)

Article Nanoscience & Nanotechnology

Extreme mechanical tunability in suspended MoS2 resonator controlled by Joule heating

Anis Chiout, Cleophanie Brochard-Richard, Laetitia Marty, Nedjma Bendiab, Meng-Qiang Zhao, A. T. Charlie Johnson, Fabrice Oehler, Abdelkarim Ouerghi, Julien Chaste

Summary: A study has found that the frequency of nanomechanical resonators can be effectively tuned at the nanoscale using a suspended MoS2 membrane heated by the Joule effect, with a significantly larger modulation amplitude compared to other approaches. This research is crucial for fully harnessing the potential of two-dimensional materials.

NPJ 2D MATERIALS AND APPLICATIONS (2023)

Editorial Material Chemistry, Multidisciplinary

Introduction: Emerging Materials for Optoelectronics

Feng Gao, Elsa Reichmanis

CHEMICAL REVIEWS (2023)

Review Nanoscience & Nanotechnology

Light management for perovskite light-emitting diodes

Baodan Zhao, Maria Vasilopoulou, Azhar Fakharuddin, Feng Gao, Abd. Rashid Bin Mohd Yusoff, Richard H. Friend, Dawei Di

Summary: Perovskite light-emitting diodes (LEDs) have shown great potential for display and lighting applications with external quantum efficiencies exceeding 20% for various colors. However, the majority of internally generated photons are trapped in the devices and lose energy through lossy channels, suggesting the need for effective light management strategies. By analyzing the intrinsic optical properties of perovskite materials and the extrinsic properties related to device structures, this Review highlights the possibility of substantially exceeding the conventional limits of planar organic LED devices and suggests new approaches for achieving ultrahigh efficiencies in perovskite LEDs.

NATURE NANOTECHNOLOGY (2023)

Article Nanoscience & Nanotechnology

Photoactivated Second Harmonic Generation in Centrosymmetric Double Perovskites

Bin Zhang, Yuqing Huang, Fuxiang Ji, Xiaohe Miao, Feng Gao, Weimin M. Chen, Irina A. Buyanova

Summary: We report the first observation of second harmonic generation (SHG) from halide double perovskite single crystals. The SHG efficiency of these materials with centrosymmetric crystalline structures is strongly dependent on the measurement temperature, increasing by up to 3 orders of magnitude at low temperatures under light illumination. The enhancement is attributed to the build-up of a light-induced electric field within the near-surface region.

ACS PHOTONICS (2023)

Article Physics, Multidisciplinary

Quantum random number generation based on a perovskite light emitting diode

Joakim Argillander, Alvaro Alarcon, Chunxiong Bao, Chaoyang Kuang, Gustavo Lima, Feng Gao, Guilherme B. Xavier

Summary: The authors demonstrate a certified quantum random number generator using a metal-halide perovskite light emitting diode. This new technology has the potential to revolutionize optical communication and lighting devices, and also has applications in quantum technologies.

COMMUNICATIONS PHYSICS (2023)

Article Chemistry, Multidisciplinary

Overcoming the voltage losses caused by the acceptor-based interlayer in laminated indoor OPVs

Gulzada Beket, Anton Zubayer, Qilun Zhang, Jochen Stahn, Fredrik Eriksson, Mats Fahlman, Thomas Osterberg, Jonas Bergqvist, Feng Gao

Summary: Harvesting indoor light for electronic devices has become an application scenario for emerging photovoltaics, especially organic photovoltaics (OPVs). This study investigates the impact of fullerene-based acceptor interlayer on the performance of laminated OPVs for indoor applications. Incorporating insulating organic components into fullerene interlayers improves energy level alignment and reduces voltage loss across the interface.

SMARTMAT (2023)

Article Chemistry, Multidisciplinary

High p doped and robust band structure in Mg-doped hexagonal boron nitride

Lama Khalil, Cyrine Ernandes, Jose Avila, Adrien Rousseau, Pavel Dudin, Nikolai D. Zhigadlo, Guillaume Cassabois, Bernard Gil, Fabrice Oehler, Julien Chaste, Abdelkarim Ouerghi

Summary: In this study, we demonstrate the stable growth of p-type hexagonal boron nitride (h-BN) by using Mg atoms as substitutional impurities. Our experiments involving micro-Raman spectroscopy, nano-ARPES, and KPFM show that Mg-doping significantly alters the electronic properties of h-BN. The Mg dopants shift the valence band maximum and result in a reduced Fermi level difference between pristine and Mg-doped h-BN crystals. This research establishes Mg-doping as a promising method for high-quality p-type doped h-BN films, which are crucial for applications in deep ultraviolet LEDs and wide bandgap optoelectronic devices.

NANOSCALE ADVANCES (2023)

Article Chemistry, Multidisciplinary

Kinetically Controlled Synthesis of Quasi-Square CsPbI3 Nanoplatelets with Excellent Stability

Mengyun Chen, Tiankai Zhang, Anna Elsukova, Zhangjun Hu, Rui Zhang, Yonghong Wang, Xianjie Liu, Xiaoke Liu, Feng Gao

Summary: Stable CsPbI3 nanoplatelets with lower surface-area-to-volume ratio and improved spectral stability are synthesized by accelerating the crystallization process using kinetic control.

SMALL (2023)

Article Energy & Fuels

Highly efficient double-side-passivated perovskite solar cells for reduced degradation and low photovoltage loss

Shahriyar Safat Dipta, Md Habibur Rahaman, Walia Binte Tarique, Ashraful Hossain Howlader, Ayush Pratik, John A. Stride, Ashraf Uddin

Summary: Implementing a double-sided passivation approach can enhance the performance of n-i-p structured PSCs and improve the stability and photovoltaic properties of the cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Paste-based silver reduction for iTOPCon rear side metallization

Daniel Ourinson, Andreas Brand, Andreas Lorenz, Marwan Dhamrin, Sebastian Tepner, Michael Linse, Nathalie Goettlicher, Kosuke Tsuji, Jonas D. Huyeng, Florian Clement

Summary: This work presents two approaches to reduce the amount of silver on the rear side of M2-sized industrial iTOPCon solar cells. The Cu-based approach shows promise with similar power conversion efficiency compared to the conventional approach, while the Al-based approach exhibits some limitations but demonstrates the potential of such type of contact for iTOPCon solar cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Screen printable copper pastes for silicon solar cells

Abasifreke Ebong, Donald Intal, Sandra Huneycutt, Thad Druffel, Ruvini Dharmadasa, Kevin Elmer, Apolo Nambo

Summary: This study demonstrates the successful metallization of a PERC silicon solar cell using screen-printable copper (Cu) paste. The Cu paste contains antioxidant additives and diffusion inhibitors to prevent oxidation and diffusion of Cu. The Cu-printed cells achieved an efficiency of 19% and showed no Cu diffusion after characterization tests. The long-term stability and effectiveness of the Cu diffusion barrier were also confirmed.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Defining specifications for accurate Metal/TCO specific contact resistivity measurements by TLM in silicon heterojunction devices

Senami Zogbo, Wilfried Favre, Olivier Bonino, Marie-Estelle Gueunier-Farret

Summary: Measuring specific contact resistivity (pc) is crucial for interface engineering in high efficiency solar cells. The Transfer Length Method (TLM) is commonly used for evaluating layer sheet resistance (Rsheet) and pc, but it is not suitable for metal/Transparent Conductive Oxide (TCO) interface evaluation in silicon heterojunction (SHJ) cells. This study investigates the parameters that restrict current confinement within the TCO, including mid-gap trap density (Dit) at the a-Si:H/c-Si interface and the activation energy (Ea = Ec - EF) variation of a-Si:H contact layers.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules part I: Cell-ribbon mechanical interaction through the solder

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: The phenomenon of ribbon lengthening in PV modules exposed to thermal cycling is not well explained in the literature. In this study, a three layers model is proposed to explain this effect, and the predictions of the model are validated through finite element method simulations and experiments. The results show that the model predictions are consistent with the indirect measurements, but not with the direct measurements. Additionally, it is inferred that the encapsulant plays a role after the solder failure.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Ribbons lengthening induced by thermal cycling in PV modules, Part II: Glass-ribbon mechanical interaction through the encapsulant

Jean-Baptiste Charpentier, Philippe Voarino, Julien Gaume

Summary: This study investigates the problematic ribbon lengthening observed in PV modules exposed to high amplitude thermal cycling. A simplified system model is proposed and accurate predictions are obtained using the Finite Element Method. The results show that the thickness of the encapsulant has a substantial impact on the lengthening of the ribbons.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Gallium nanoparticles as antireflection structures on III-V solar cells

S. Catalan-Gomez, E. Martinez Castellano, M. Schwarz, M. Montes Bajo, L. Dorado Vargas, A. Gonzalo, A. Redondo-Cubero, A. Gallego Carro, A. Hierro, J. M. Ulloa

Summary: This study investigates the use of core-shell gallium nanoparticles as functional light scatterers on solar cells. By optimizing the nanoparticle size, the short-circuit current of the solar cells is significantly improved. The underlying physical mechanism is studied through optical measurements and simulations, and a method to reduce the plasmonic effect of the nanoparticles is demonstrated.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Highly reflective and passivated ohmic contacts in p-Ge by laser processing of aSiCx:H(i)/Al2O3/aSiC films for thermophotovoltaic applications

M. Gamel, G. Lopez, A. M. Medrano, A. Jimenez, A. Datas, M. Garin, I. Martin

Summary: In this study, a highly reflective ohmic contact to p-type c-Ge material is demonstrated, which can improve the efficiency of thermophotovoltaic devices. The experimental results show that this contact can simultaneously meet the requirements of good back surface passivation, low electrical resistivity, and high reflectivity. Moreover, simulations suggest that implementing these back contacts has the potential to achieve conversion efficiencies comparable to high-efficiency c-Ge TPV cells.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Improvement on solar selective absorption properties of anodic aluminum oxide photonic crystal films by electrodeposition of silver

Hongyang Wei, Qing Xu, Dongchu Chen, Min Chen, Menglei Chang, Xiufang Ye

Summary: This study prepared solar selective absorption films based on anodic aluminum oxide (AAO) photonic crystals using a unique electrodeposition method. The Co-Ag electrodeposited film exhibited superior solar selective absorption properties and thermal stability.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Optical absorption driven by efficient refraction and light concentration for photovoltaic applications

Ankit Kumar, Ankit Chauhan, Jordi Llobet, Helder Fonseca, Patricia C. Sousa, Carlos Calaza, Gil Shalev

Summary: This study found that decorating subwavelength arrays with SiO2 quasi-nanolenses (qNL arrays) can enhance the absorption of the solar spectrum. Optical absorption mechanisms in qNL arrays were investigated using near-field scanning optical microscopy (NSOM), revealing that the enhancement is a result of the combination of effective antireflection coating, increased optical interactions between adjacent dielectrics for elevated light trapping, and strong light concentration due to the presence of qNLs.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Progress on the reduction of silver consumption in metallization of silicon heterojunction solar cells

S. Pingel, T. Wenzel, N. Goettlicher, M. Linse, L. Folcarelli, J. Schube, S. Hoffmann, S. Tepner, Y. C. Lau, J. Huyeng, A. Lorenz, F. Clement

Summary: This study demonstrates the potential to reduce silver consumption in highly efficient SHJ cells through fine-line screen printing using low temperature paste with various screens. The results show that using finer mesh allows for narrower grid fingers and lower resistance, leading to improved cell efficiency. Simulation results indicate that module wire configuration is crucial for reducing silver consumption.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Efficient-thermal conductivity, storage and application of bionic tree-ring composite phase change materials based on freeze casting

Xibo He, Jun Qiu, Wei Wang, Yicheng Hou, Yong Shuai

Summary: This paper proposes a novel phase change material with high thermal conductivity and stability for fast photo-thermal conversion and storage. The experimental results demonstrate excellent durability and stability of the phase change material, with good performance in thermal conductivity and thermal storage efficiency.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Solar evaporation of liquid marbles with tunable nanowire array

Qingyuan Liu, Lin Wang, Zheng Liu, Guohua Liu

Summary: A new evaporating structure consisting of liquid marble with tunable nanowire array is proposed to enhance solar evaporation. The experiments show that the liquid marble with nanowire array exhibits outstanding evaporation performance, which has significant implications for seawater desalination or wastewater treatment.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Effects of different interface on the stability of hybrid heterojunction solar cells

Hao Liu, Qiming Liu, Jinpei Liu, Yonggang Zhao, Yingjie Yu, Yue An, Ganghui Wei, Yanzheng Li, Yujun Fu, Junshuai Li, Deyan He

Summary: Moisture in the air is identified as the main cause of performance degradation in organic-inorganic hybrid solar cells. Exposure to air leads to the growth of thin oxide layer on the interface and the formation of silver sulfide, increasing the series resistance and decreasing the fill factor, thus degrading the cell performance.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)

Article Energy & Fuels

Refractive indices and extinction coefficients of p-type doped Germanium wafers for photovoltaic and thermophotovoltaic devices

E. Blanco, P. Martin, M. Dominguez, P. Fernandez-Palacios, I. Lombardero, C. Sanchez-Perez, I. Garcia, C. Algora, M. Gabas

Summary: This study addresses the lack of optical parameters for p-type Ge wafers by determining the complex refractive indices of commercial Ge wafers with varying doping levels. The obtained data successfully reproduces the critical points associated with interband transitions and absorption features below the bandgap. The refractive indices were validated through experimental measurements and solar cell simulations.

SOLAR ENERGY MATERIALS AND SOLAR CELLS (2024)