4.7 Letter

Comments on the paper by Kemmitt et al. (2008) 'Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass - A new perspective' [Soil Biology & Biochemistry 40, 61-73]: The biology of the Regulatory Gate Reply

Journal

SOIL BIOLOGY & BIOCHEMISTRY
Volume 41, Issue 2, Pages 440-443

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2008.09.002

Keywords

Soil organic matter; Mineralisation; Microbial biomass; Soil excenzymes; Regulatory gate; Chloroform fumigation

Categories

Ask authors/readers for more resources

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Soil Science

Biological denitrification inhibition (BDI) on nine contrasting soils: An unexpected link with the initial soil denitrifying community

C. Beraud, F. Piola, J. Gervaix, G. Meiffren, C. Creuze des Chatelliers, A. Delort, C. Boisselet, S. Poussineau, E. Lacroix, A. A. M. Cantarel

Summary: This study investigated the soil factors influencing the development of biological denitrification inhibition (BDI) and found that initial soil moisture, ammonium concentration, and the initial abundance of certain microbial genes play significant roles in BDI development. Additionally, the research highlighted the relevance of biotic factors in explaining BDI and proposed the use of procyanidin concentration from plant belowground system as a new proxy for measuring BDI intensity.

SOIL BIOLOGY & BIOCHEMISTRY (2024)

Article Soil Science

Core species impact plant health by enhancing soil microbial cooperation and network complexity during community coalescence

Yizhu Qiao, Tingting Wang, Qiwei Huang, Hanyue Guo, He Zhang, Qicheng Xu, Qirong Shen, Ning Ling

Summary: Soil microbial community coalescence, the mixing and interaction of microbial communities, has been found to enhance the stability and complexity of rhizobacterial networks, leading to improved plant health and biomass. This study investigated the effects of different degrees of bacterial community coalescence on plant disease resistance by mixing soils from healthy and diseased habitats for watermelon planting. The results showed that mixing in more healthy soil reduced the plant disease index and increased biomass by improving the stability and complexity of the rhizobacterial network. Core taxa Nitrospirillum and Singulisphaera were enriched in the rhizosphere from healthy soils and played important roles in disease suppression and regulating the positive cohesion and modularity of the networks. Overall, these findings provide insights into the potential mechanism of microbial community coalescence for improving plant microbial community function and suggest new tools for enhancing plant fitness via soil microbiota mixing.

SOIL BIOLOGY & BIOCHEMISTRY (2024)

Article Soil Science

Maize genotypes regulate the feedbacks between maize nitrogen uptake and soil nitrogen transformations

Mengqiu He, Shending Chen, Lei Meng, Xiaoqian Dan, Wenjie Wang, Qinying Zhu, Zucong Cai, Jinbo Zhang, Pierfrancesco Nardi, Christoph Mueller

Summary: Maize genotypes directly affect gene expression and nitrogen uptake capacity. The feedback between maize genotypes and soil nitrogen transformations, as well as their regulations on nitrogen uptake capacity, have been studied. The findings suggest that maize genotypes play a central role in regulating these feedbacks, which are important for maize breeding and enhancing maize production.

SOIL BIOLOGY & BIOCHEMISTRY (2024)

Article Soil Science

Accumulation of soil microbial extracellular and cellular residues during forest rewilding: Implications for soil carbon stabilization in older plantations

Ke Shi, Jiahui Liao, Xiaoming Zou, Han Y. H. Chen, Manuel Delgado-Baquerizo, Zhengming Yan, Tingting Ren, Honghua Ruan

Summary: Through rewilding, microbial extracellular and cellular residues can continuously accumulate in soils and significantly contribute to soil organic carbon sequestration. Extracellular residues are mainly driven by fine root biomass, while cellular residues are mainly driven by soil nitrogen and organic carbon content.

SOIL BIOLOGY & BIOCHEMISTRY (2024)

Article Soil Science

Threats to the soil microbiome from nanomaterials: A global meta and machine-learning analysis

Sensen Chen, Ying Teng, Yongming Luo, Eiko Kuramae, Wenjie Ren

Summary: This study comprehensively assesses the effects of NMs on the soil microbiome through a global meta-analysis. The results reveal significant negative impacts of NMs on soil microbial diversity, biomass, activity, and function. Metal NMs, especially Ag NMs, have the most pronounced negative effects on various soil microbial community metrics.

SOIL BIOLOGY & BIOCHEMISTRY (2024)

Article Soil Science

How will climate change affect the feeding biology of Collembola?

Shareen K. D. Sanders, Gerard Martinez-De Leon, Ludovico Formenti, Madhav P. Thakur

Summary: Collembolans, the diverse group of soil invertebrates, are affected by anthropogenic climate warming, which alters their diversity and density. In addition to abiotic stressors, changes in food availability, specifically the abundance of saprotrophic and mycorrhizal fungi, influence Collembola responses to climate warming. Collembolans prefer saprotrophic fungi but rely on mycorrhizal fungi when food sources are scarce. Understanding the mechanisms behind these dietary shifts in warm-dry and warm-wet soil conditions is crucial for predicting the impact of climate change on Collembola-fungal interactions.

SOIL BIOLOGY & BIOCHEMISTRY (2024)

Article Soil Science

Mixing plant residues of different quality reduces priming effect and contributes to soil carbon retention

Wimonsiri Pingthaisong, Sergey Blagodatsky, Patma Vityakon, Georg Cadisch

Summary: A study found that mixing high-C/N ratio rice straw with low-C/N ratio groundnut stover can improve the chemical composition of the input, stimulate microbial growth, decrease the loss of residue-derived carbon in the soil, and reduce native soil carbon and nitrogen consumption.

SOIL BIOLOGY & BIOCHEMISTRY (2024)

Article Soil Science

Interplanting leguminous shrubs boosts the trophic interactions of soil micro-food web in a karst grassland

Jiachen Wang, Jie Zhao, Rong Yang, Xin Liu, Xuyuan Zhang, Wei Zhang, Xiaoyong Chen, Wende Yan, Kelin Wang

Summary: Nitrogen is vital for ecosystem productivity, restoration, and succession processes. This study found that legume intercropping was more effective than chemical nitrogen fertilizers in promoting the complexity and stability of the soil micro-food web, as it increased microbial and nematode communities and enhanced energy flow patterns.

SOIL BIOLOGY & BIOCHEMISTRY (2024)