4.6 Article

An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields

Journal

SOFT MATTER
Volume 10, Issue 45, Pages 9110-9119

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4sm01778a

Keywords

-

Funding

  1. NWO-VICI grant

Ask authors/readers for more resources

When a suspension of colloidal particles is placed in an oscillating electric field, the contrast in dielectric constant between the particles and the solvent induces a dipole moment in each of the colloidal particles. The resulting dipole-dipole interactions can strongly influence the phase behavior of the system. We investigate the phase behavior of cube-shaped colloidal particles in electric fields, using both experiments and Monte Carlo simulations. In addition to a string fluid phase and a body centered tetragonal (BCT) crystal phase, we observe a columnar phase consisting of hexagonally ordered strings of rotationally disordered cubes. By simulating the system for a range of pressures and electric field strengths, we map out the phase diagram, and compare the results to the experimentally observed phases. Additionally, we estimate the accuracy of a point-dipole approximation on the alignment of cubes in string-like clusters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available