4.7 Article

Photoinitiated Polymerization-Induced Microphase Separation for the Preparation of Nanoporous Polymer Films

Journal

ACS MACRO LETTERS
Volume 4, Issue 11, Pages 1244-1248

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsmacrolett.5b00734

Keywords

-

Funding

  1. KAIST [G04130012]
  2. Ministry of Science, ICT, and Future Planning of Korea
  3. POSTECH
  4. National Research Foundation of Korea [10Z20130012893] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

We report on the use of photoinitiated reversible addition-fragmentation chain transfer (RAFT) polymerization for the facile fabrication of cross-linked nanoporous polymer films with three-dimensionally (3D) continuous pore structure. The photoinitiated polymerization of isobornyl acrylate (IBA) in the presence of 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (CTA) and 2,2-dimethoxy-2-phenylacetophenone as a photoinitiator proceeded in a controlled manner, yet more rapidly compared to thermally initiated polymerization. When polylactide-macroCTA (PLA-CTA) was used, PLA-b-PIBA with high molar mass was obtained after several minutes of irradiation at room temperature. We confirmed that microphase separation occurs in the PLA-b-PIBA and that nanoporous PIBA can be derived from the PLA-b-PIBA precursor by selective PLA etching. To fabricate the cross-linked nanoporous polymer, IBA was copolymerized with ethylene glycol diacrylate (EGDA) in the presence of PLA-CTA to produce a cross-linked block polymer precursor consisting of bicontinuous PLA and P(IBA-co-EGDA) microdomains, via polymerization-induced microphase separation. We demonstrated that nanoporous P(IBA-co-EGDA) monoliths and films with 3D continuous pores can be readily obtained via this approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available