4.2 Article

Drug Release and Skin Penetration from Solid Lipid Nanoparticles and a Base Cream: A Systematic Approach from a Comparison of Three Glucocorticoids

Journal

SKIN PHARMACOLOGY AND PHYSIOLOGY
Volume 24, Issue 4, Pages 199-209

Publisher

KARGER
DOI: 10.1159/000324053

Keywords

Solid lipid nanoparticles; Glucocorticoids; Skin penetration; Drug release; Epidermal targeting

Funding

  1. German Research Foundation [FG 463]

Ask authors/readers for more resources

Solid lipid nanoparticles (SLNs) can enhance drug penetration into the skin, yet the mechanism of the improved transport is not known in full. To unravel the influence of the drug-particle interaction on penetration enhancement, 3 glucocorticoids (GCs), prednisolone (PD), the diester prednicarbate (PC) and the monoester betamethasone 17-valerate (BMV), varying in structure and lipophilicity, were loaded onto SLNs. Theoretical permeability coefficients (cm/s) of the agents rank BMV (-6.38) >= PC (-6.57) > PD (-7.30). GC-particle interaction, drug release and skin penetration were investigated including a conventional oil-in-water cream for reference. Both with SLN and cream, PD release was clearly superior to PC release which exceeded BMV release. With the cream, the rank order did not change when studying skin penetration, and skin penetration is thus predominantly influenced by drug release. Yet, the penetration profile for the GCs loaded onto SLNs completely changed, and differences between the steroids were almost lost. Thus, SLNs influence skin penetration by an intrinsic mechanism linked to a specific interaction of the drug-carrier complex and the skin surface, which becomes possible by the lipid nature and nanosize of the carrier and appears not to be derived by testing drug release. Interestingly, PC and PD uptake from SLN even resulted in epidermal targeting. Thus, SLNs are not only able to improve skin penetration of topically applied drugs, but may also be of particular interest when specifically aiming to influence epidermal dysfunction. Copyright (C) 2011 S. Karger AG, Basel

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available