3.9 Article

Sperm cell architecture, insemination, and fertilization in the model fern, Ceratopteris richardii

Journal

SEXUAL PLANT REPRODUCTION
Volume 21, Issue 3, Pages 153-167

Publisher

SPRINGER
DOI: 10.1007/s00497-008-0068-x

Keywords

egg; fertilization; sperm; insemination; fern

Ask authors/readers for more resources

Motile sperm cells of land plants are released directly into the environment and encounter numerous constraints on their way to the egg. Sperm cell organization, shape, size, and plasticity are crucial to the processes associated with fertilization. We conducted an ultrastructural investigation to detail insemination (sperm release, swimming and movement within the archegonium) and fertilization in the model fern Ceratopteris richardii. Gametophytes were grown from spores using sterile culture techniques and flooded in water when sexually mature. Materials were examined at different stages post-flooding. During insemination in C. richardii, the sperm cytoskeleton and flagella rearrange, and the coils of the cell extend while entering the neck canal. In this nearly linear configuration, the dense ridge, a densely compacted band of filaments presumed to be actin, expands to surround the leading edge of the sperm cell. This ridge fuses with the receptive site on the female gamete and is the sperm component that initiates contact with the egg nuclear envelope. All cellular components, except plastids, enter the egg cytoplasm. Sperm mitochondria are distinguishable from those of the egg because they are encased by two or three additional membranes and are sequestered from the zygote cytoplasm. During karyogamy, the sperm components, including the microtubule cytoskeleton (spline) and flagella, maintain their spatial integrity. Microtubules play key roles not only in sperm cell structure but also in facilitating karyogamy in this fern. After karyogamy is completed, microtubule arrays of the sperm cell and the components of the locomotory apparatus are disassembled. We provide the first demonstration of the likely involvement of sperm actin in egg penetration in land plants and new insights into the fate of paternal organelles. This study points to the roles sperm cell structure and dynamics play in the intricate processes of insemination and fertilization in land plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available