4.7 Article

Development of temperature-control system for liquid droplet using surface Acoustic wave devices

Journal

SENSORS AND ACTUATORS A-PHYSICAL
Volume 149, Issue 2, Pages 292-297

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.sna.2008.11.007

Keywords

Surface acoustic wave (SAW); SAW streaming; Longitudinal wave radiation; Liquid temperature control

Ask authors/readers for more resources

In this paper, we present a liquid-droplet-heating system using a surface acoustic wave (SAW) device. When liquid is placed on a Rayleigh-SAW-propagating surface, a longitudinal wave is radiated into the liquid. If the SAW amplitude increases, the liquid shows non-linear dynamics, such as vibrating, streaming, small droplet flying, and atomizing. This phenomenon is well known as SAW streaming. The liquid temperature is measured during the longitudinal wave radiation and found to increase. First, the mechanism of the liquid-heating effect is discussed on the basis of experimental results. The surface electrical condition is changed to investigate the effect of dielectric heating. The obtained results indicate that the radiated longitudinal wave causes liquid heating and the dielectric heating effect does not. Second, the fundamental properties of the liquid temperature are measured by varying the applied voltage, duty factor, and liquid viscosity. The liquid temperature is found to be proportional to the duty factor and the square of the applied voltage. Therefore, the liquid temperature can be controlled by these applied signals. Also, by using highly Viscous Solutions, the liquid temperature is increased to more than 100 degrees C. Moreover, for chemical applications, the possibility of periodic temperature control is tested by varying the duty factor. The obtained results strongly suggest that an efficient thermal cycler is realized. A novel application of the SAW device is proposed on the basis of SAW streaming. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available