4.7 Article

A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

Journal

SCIENTIFIC REPORTS
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep14903

Keywords

-

Funding

  1. National Natural Science Foundation of China [51302207, 51275392, 51271140]
  2. Fundamental Research Funds for the Central Universities [2015gjhz03]
  3. National Young 1000 Talents Program of China
  4. Office of Science, Office of Basic Energy Sciences, Materials Science Division, of the U.S. Department of Energy [DE-AC02-05CH11231]
  5. NSF [0416243]

Ask authors/readers for more resources

Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available