4.7 Review

Arsenic in Chinese coals: Distribution, modes of occurrence, and environmental effects

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 412, Issue -, Pages 1-13

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2011.10.026

Keywords

Arsenic; Chinese coal; Modes of occurrence; Geologic factors; Environmental impact

Funding

  1. National Natural Science Foundation of China [40873070]
  2. Research Foundation for Doctoral Program of Higher Education of China [20093402110001]
  3. Special projects of major national science and technology [2009ZX05039-003]
  4. National Foundation of Anhui Education [KJ2008A147]

Ask authors/readers for more resources

Arsenic, one of the most hazardous elements occurring in coals, can be released to the environment during coal processing and combustion. Based on the available literature and published results obtained in our laboratory, the content, distribution and the modes of occurrence of As in Chinese coals, and its environmental and impacts are reviewed in this article. With the 4763 sets of data (from the literature) rearranged, the arithmetic mean As concentration of each province and weighted mean As concentration of the entire country (using the expected coal reserves as the weighting factor) were calculated. The weighted mean As concentration in Chinese coals is 3.18 mg/kg, with As concentration increasing from northern China to southern China. The As concentration in coal varies with coal-forming ages and coal ranks. Arsenic has several modes of occurrence in coals. According to results obtained by other studies and our own experiments, As is mainly associated with mineral matter (such as pyrite and other sulfide minerals) in coals, although a significant amount of arsenic is associated with organic matter. The accumulation of As in coal is controlled by many geological factors during coal-forming processes, including plant decomposition, sedimentary environments, and epigenetic hydrothermal activity. During the combustion of coal, As is released to the air, water, and soil, causing serious environmental pollution. More than 45% of the coal consumed in China is utilized by power plants, and it is estimated that nearly 522 tonnes, 21 tonnes and 252 tonnes of As are emitted into the atmosphere by industries, residential buildings and coal-fired power plants, respectively, every year. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Agricultural Engineering

Combustion characteristics and arsenic retention during co-combustion of agricultural biomass and bituminous coal

Chuncai Zhou, Guijian Liu, Xudong Wang, Cuicui Qi, Yunhu Hu

BIORESOURCE TECHNOLOGY (2016)

Article Environmental Sciences

The importance of evaluating metal exposure and predicting human health risks in urban-periurban environments influenced by emerging industry

Balal Yousaf, Amina, Guijian Liu, Ruwei Wang, Muhammad Imtiaz, Muhammad Shahid Rizwan, Muhammad Zia-ur-Rehman, Abdul Qadir, Youbin Si

CHEMOSPHERE (2016)

Review Geosciences, Multidisciplinary

Biogeochemical controls on mercury stable isotope compositions of world coal deposits: A review

Ruoyu Sun, Jeroen E. Sonke, Guijian Liu

EARTH-SCIENCE REVIEWS (2016)

Review Engineering, Environmental

Geochemistry of vanadium (V) in Chinese coals

Yuan Liu, Guijian Liu, Qinyuan Qu, Cuicui Qi, Ruoyu Sun, Houqi Liu

ENVIRONMENTAL GEOCHEMISTRY AND HEALTH (2017)

Article Agronomy

Investigating the biochar effects on C-mineralization and sequestration of carbon in soil compared with conventional amendments using the stable isotope (δ13C) approach

Balal Yousaf, Guijian Liu, Ruwei Wang, Qumber Abbas, Muhammad Imtiaz, Ruijia Liu

GLOBAL CHANGE BIOLOGY BIOENERGY (2017)

Article Engineering, Environmental

Emission characterization and δ13C values of parent PAHs and nitro-PAHs in size-segregated particulate matters from coal-fired power plants

Ruwei Wang, Balal Yousaf, Ruoyu Sun, Hong Zhang, Jiamei Zhang, Guijian Liu

JOURNAL OF HAZARDOUS MATERIALS (2016)

Article Geosciences, Multidisciplinary

Comparative study on geochemical characterization of the Carboniferous aluminous argillites from the Huainan Coal Basin, China

Bingyu Chen, Guijian Liu, Dun Wu, Ruoyu Sun

TURKISH JOURNAL OF EARTH SCIENCES (2016)

Article Environmental Sciences

Historical (1850-2010) mercury stable isotope inventory from anthropogenic sources to the atmosphere

Ruoyu Sun, David G. Streets, Hannah M. Horowitz, Helen M. Amos, Guijian Liu, Vincent Perrot, Jean-Paul Toutain, Holger Hintelmann, Elsie M. Sunderland, Jeroen E. Sonke

ELEMENTA-SCIENCE OF THE ANTHROPOCENE (2016)

Article Biodiversity Conservation

Bioavailability and mobility of heavy metals in soil in vicinity of a coal mine from Huaibei, China

Lanlan Lu, Guijian Liu, Jie Wang, Yaqin Wu

HUMAN AND ECOLOGICAL RISK ASSESSMENT (2017)

Article Geochemistry & Geophysics

Spatio-temporal variability and fractionation of vanadium (V) in sediments from coal concentrated area of Huai River Basin, China

Yuan Liu, Guijian Liu, Jie Wang, Lei Wu

JOURNAL OF GEOCHEMICAL EXPLORATION (2017)

Article Environmental Sciences

Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China

Jie Wang, Guijian Liu, Houqi Liu, Paul K. S. Lam

SCIENCE OF THE TOTAL ENVIRONMENT (2017)

Article Spectroscopy

Raman spectral characteristics of magmatic-contact metamorphic coals from Huainan Coalfield, China

Shancheng Chen, Dun Wu, Guijian Liu, Ruoyu Sun

SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY (2017)

Article Environmental Sciences

Pollution characteristics and human health risks of potentially (eco) toxic elements (PTEs) in road dust from metropolitan area of Hefei, China

Muhammad Ubaid Ali, Guijian Liu, Balal Yousaf, Qumber Abbas, Habib Ullah, Mehr Ahmed Mujtaba Munir, Biao Fu

CHEMOSPHERE (2017)

Article Environmental Sciences

Levels and Sources of PAHs in Air-borne PM2.5 of Hefei City, China

Ruoyu Hu, Guijian Liu, Hong Zhang, Huaqin Xue, Xin Wang

BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY (2017)

Article Environmental Sciences

Comparing nearshore and embayment scale assessments of submarine groundwater discharge: Significance of offshore groundwater discharge as a nutrient pathway

Toshimi Nakajima, Mao Kuragano, Makoto Yamada, Ryo Sugimoto

Summary: This study compared the contribution of submarine groundwater discharge (SGD) to river nutrient budgets at nearshore and embayment scales, and found that SGD-derived nutrients become more important at larger spatial scales.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Impact of NO2 emissions from household heating systems with wall-mounted gas stoves on indoor and ambient air quality in Chinese urban areas

Fan Liu, Lei Zhang, Chongyang Zhang, Ziguang Chen, Jingguang Li

Summary: NO2 emissions from wall-mounted gas stoves used for household heating have become a significant source of indoor pollution in Chinese urban areas. The high indoor concentration of NO2 poses potential health risks to residents. It is urgently necessary to establish relevant regulations and implement emission reduction technologies to reduce NO2 emissions from wall-mounted gas stoves.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Letter Environmental Sciences

Letter to the editor regarding Collard et al. (2023): Persistence and mobility (defined as organic-carbon partitioning) do not correlate to the detection of substances found in surface and groundwater: Criticism of the regulatory concept of persistent and mobile substances

Hans Peter H. Arp, Raoul Wolf, Sarah E. Hale, Sivani Baskaran, Juliane Gluege, Martin Scheringer, Xenia Trier, Ian T. Cousins, Harrie Timmer, Roberta Hofman-Caris, Anna Lennquist, Andre D. Bannink, Gerard J. Stroomberg, Rosa M. A. Sjerps, Rosa Montes, Rosario Rodil, Jose Benito Quintana, Daniel Zahn, Herve Gallard, Tobias Mohr, Ivo Schliebner, Michael Neumann

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Harnessing the composition of dissolved organic matter in lagoon sediment in association with rare earth elements using fluorescence and UV-visible absorption spectroscopy

Philomina Onyedikachi Peter, Binessi Edouard Ifon, Francois Nkinahamira, Kayode Hassan Lasisi, Jiangwei Li, Anyi Hu, Chang-Ping Yu

Summary: This study investigates the relationship between dissolved organic matter (DOM) and Rare Earth Elements (REEs) in sediments from Yundang Lagoon, China. The results show four distinct fluorescent components, with protein-like substances being the most prevalent. Additionally, the total fluorescence intensity and LREE concentrations exhibit a synchronized increase from Outer to Inner to Songbai Lake core sediments. The findings demonstrate a strong correlation between DOM content and pollution levels.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

An advanced global soil erodibility (K) assessment including the effects of saturated hydraulic conductivity

Surya Gupta, Pasquale Borrelli, Panos Panagos, Christine Alewell

Summary: The objective of this study is to incorporate soil hydraulic properties into the erodibility factor (K) of USLE-type models. By modifying and improving the existing equations for soil texture and permeability, the study successfully included information on saturated hydraulic conductivity (Ksat) into the calculation of K factor. Using the Random Forest machine learning algorithm, two independent K factor maps with different spatial resolutions were generated. The results show that the decrease in K factor values has a positive impact on the modeling of soil erosion rates.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Comparison of adsorption-extraction (AE) workflows for improved measurements of viral and bacterial nucleic acid in untreated wastewater

Jesmin Akter, Wendy J. M. Smith, Yawen Liu, Ilho Kim, Stuart L. Simpson, Phong Thai, Asja Korajkic, Warish Ahmed

Summary: The choice of workflow in wastewater surveillance has a significant impact on SARS-CoV-2 concentrations, while having minimal effects on HF183 and no effect on HAdV 40/41 concentrations. Certain components in the workflow can be interchangeable, but factors such as buffer type, chloroform, and homogenization speed can affect the recovery of viruses and bacteria.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Insights the dominant contribution of biomass burning to methanol-soluble PM2.5 bounded oxidation potential based on multilayer perceptron neural network analysis in Xi'an, China

Yu Luo, Xueting Yang, Diwei Wang, Hongmei Xu, Hongai Zhang, Shasha Huang, Qiyuan Wang, Ningning Zhang, Junji Cao, Zhenxing Shen

Summary: Atmospheric PM2.5, which can generate reactive oxygen species (ROS), is associated with cardiorespiratory morbidity and mortality. The study found that both the mass concentration of PM2.5 and the DTT activity were higher during the heating season than during the nonheating season. Combustion sources were the primary contributors to DTT activity during the heating season, while secondary formation dominated during the nonheating season. The study also revealed that biomass burning had the highest inherent oxidation potential among all sources investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

A macroplastic vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i

Erin L. Murphy, Leah R. Gerber, Chelsea M. Rochman, Beth Polidoro

Summary: Plastic pollution has devastating consequences for marine organisms. This study uses a trait-based framework to develop a vulnerability index for marine mammals, seabirds, and sea turtles in Hawai'i. The index ranks 63 study species based on their vulnerability to macroplastic pollution, providing valuable information for species monitoring and management priorities.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem

Kenji Maurice, Amelia Bourceret, Sami Youssef, Stephane Boivin, Liam Laurent-Webb, Coraline Damasio, Hassan Boukcim, Marc-Andre Selosse, Marc Ducousso

Summary: Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Little is known about microbial community resistance and adaptation to disturbances, hindering our understanding of recovery latency and implications for ecosystem functioning. This study found that anthropic disturbance and natural disturbance have different effects on the topology and stability of soil microbial networks.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Adsorption of metal ions by oceanic manganese nodule and deep-sea sediment: Behaviour, mechanism and evaluation

Yunhao Li, Yali Feng, Haoran Li, Yisong Yao, Chenglong Xu, Jinrong Ju, Ruiyu Ma, Haoyu Wang, Shiwei Jiang

Summary: Deep-sea mining poses a serious threat to marine ecosystems and human health by disturbing sediment and transmitting metal ions through the food chain. This study developed a new regenerative adsorption material, OMN@SA, which effectively removes metal ions. The adsorption mechanism and performance of the material for metal ion fixation were investigated.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Advanced oxidation process of valsartan by activated peroxymonosulfate: Chemical characterization and ecotoxicological effects of its byproducts

Antonio Medici, Margherita Lavorgna, Marina Isidori, Chiara Russo, Elena Orlo, Giovanni Luongo, Giovanni Di Fabio, Armando Zarrelli

Summary: Valsartan, a widely used antihypertensive drug, has been detected in high concentrations in surface waters due to its unchanged excretion and incomplete degradation in wastewater treatment plants. This study investigated the degradation of valsartan and identified 14 degradation byproducts. The acute and chronic toxicity of these byproducts were evaluated in key organisms in the freshwater trophic chain.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Photodegradation of typical pharmaceuticals changes toxicity to algae in estuarine water: A metabolomic insight

Jiang Lin, Lianbao Chi, Qing Yuan, Busu Li, Mingbao Feng

Summary: This study investigated the photodegradation behavior and product formation of two representative pharmaceuticals in simulated estuary water. The study found that the formed transformation products of these pharmaceuticals have potential toxicity on marine organisms, including oxidative stress and damage to cellular components.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Association of ambient air pollution and pregnancy rate among women undergoing assisted reproduction technology in Fujian, China: A retrospective cohort study

Hua Fang, Dongdong Jiang, Ye He, Siyi Wu, Yuehong Li, Ziqi Zhang, Haoting Chen, Zixin Zheng, Yan Sun, Wenxiang Wang

Summary: This study revealed that exposure to lower levels of air pollutants led to decreased pregnancy rates, with PM10, NO2, SO2, and CO emerging as the four most prominent pollutants. Individuals aged 35 and above exhibited heightened susceptibility to pollutants.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

The predictive machine learning model of a hydrated inverse vulcanized copolymer for effective mercury sequestration from wastewater

Ali Shaan Manzoor Ghumman, Rashid Shamsuddin, Amin Abbasi, Mohaira Ahmad, Yoshiaki Yoshida, Abdul Sami, Hamad Almohamadi

Summary: In this study, inverse vulcanized polysulfides (IVP) were synthesized by reacting molten sulfur with 4-vinyl benzyl chloride, and then functionalized using N-methyl D-glucamine (NMDG). The functionalized IVP showed a high mercury adsorption capacity and a machine learning model was developed to predict the amount of mercury removed. Furthermore, the functionalized IVP can be regenerated and reused, providing a sustainable and cost-effective adsorbent.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)

Article Environmental Sciences

Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death

Rita Bonfiglio, Renata Sisto, Stefano Casciardi, Valeria Palumbo, Maria Paola Scioli, Erica Giacobbi, Francesca Servadei, Gerry Melino, Alessandro Mauriello, Manuel Scimeca

Summary: This study investigated the presence of aluminum in human colon cancer samples and its potential association with biological processes involved in cancer progression. Aluminum was found in tumor areas of 24% of patients and was associated with epithelial to mesenchymal transition (EMT) and cell death. Additional analyses revealed higher tumor mutational burden and mutations in genes related to EMT and apoptosis in aluminum-positive colon cancers. Understanding the molecular mechanisms of aluminum toxicity may improve strategies for the management of colon cancer patients.

SCIENCE OF THE TOTAL ENVIRONMENT (2024)