4.7 Article

Studying sulfur functional groups in Norway spruce year rings using S L-edge total electron yield spectroscopy

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 403, Issue 1-3, Pages 196-206

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.scitotenv.2008.05.034

Keywords

Norway spruce; wood; sulfur; soft X-rays; TEY; ICP-OES; environment

Funding

  1. National Foundation [DMR 0084402]

Ask authors/readers for more resources

Profiles of the major sulfur functional groups in mature Norway spruce wood tissue have been established for the first time. The big challenge was the development of a method suitable for sulfur speciation in samples with very low sulfur content (<100 ppm). This became possible by synchrotron X-ray absorption spectroscopy at the sulfur L-edge in total electron yield (TEY) detection mode with thin gold-coated wood slices. Functional groups were identified using sulfur compound spectra as fingerprints. Latewood of single year rings revealed metabolic plausible sulfur forms, particularly inorganic sulfide, organic disulfide, methylthiol, and highly oxidized sulfur. Form-specific profiles with Norway spruces from three different Swiss forest sites revealed high, but hitherto little-noticed, sulfur intensities attributable to natural heartwood formation and a common, but physiologically unexpected maximum around year ring 1986 with trees from the industrialized Swiss Plateau. It is hypothesized whether it may have resulted from the huge reduction in sulfur emissions after 1980 due to Swiss policy. Comparison with total S content profiles from optical emission spectroscopy underlined the more accurate and temporally better resolved TEY data with single wood year rings and it opened novel insights into the wood cell chemistry (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available