4.7 Article

Biocatalytic desymmetrization of 3-substituted glutaronitriles by nitrilases. A convenient chemoenzymatic access to optically active (S)-Pregabalin and (R)-Baclofen

Journal

SCIENCE CHINA-CHEMISTRY
Volume 57, Issue 8, Pages 1164-1171

Publisher

SCIENCE PRESS
DOI: 10.1007/s11426-014-5139-2

Keywords

enzymatic desymmetrization; nitrilases; (S)-Pregabalin; (R)-Baclofen

Funding

  1. Chinese Academy of Sciences [KSZD-EW-Z-015]
  2. CAS Agenda to Provide S&T Support and Services

Ask authors/readers for more resources

Desymmetrization of prochiral 3-substituted glutaronitriles offers a new approach to access (S)-Pregabalin and (R)-Baclofen. A number of nitrilases from diverse sources were screened with 3-isobutylglutaronitriles (1a) or 3-(4'-chlorophenyl)glutaronitriles (1b) as the substrate. Some nitrilases were found to catalyze the desymmetric hydrolysis of 1a and 1b to form optically active 3-(cyanomethyl)-5-methylhexanoic acid (2a) and 3-(4'-chlorophenyl)-4-cyanobutanoic acid (2b) with high enantiomeric excesse (ee), respectively. This cannot be achieved using traditional chemical hydrolysis. Among them, AtNIT3 generated (R)-2b, whereas BjNIT6402 and HsNIT produced the opposite (S)-enantiomer with high conversions and ee values. Not only the nitrilases showed different activities and stereoselectivities toward these 3-substituted glutaronitriles, the 3-substituent of the substrates also exerted great effect on the enzyme activity and stereoselectivity. (S)-2a and (S)-2b were prepared with high yields and ee values using BjNIT6402 and HsNIT as the biocatalysts, respectively. A straightforward Curtius rearrangement of (S)-2a and (S)-2b, followed by the acidic hydrolysis, afforded (S)-Pregabalin and (R)-Baclofen. This offers a new platform methodology for the synthesis of optically active beta-substituted gamma-amino acids of pharmaceutical importance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available