4.5 Article

Surface design with self-heating smart polymers for on-off switchable traps

Journal

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1088/1468-6996/12/4/044609

Keywords

smart polymer; poly(N-isopropylacrylamide); magnetic particle; alternating magnetic field (AMF); high-performance liquid chromatography (HPLC)

Funding

  1. Japan Science and Technology Agency (JST)
  2. Grants-in-Aid for Scientific Research [23650295, 22300173, 22680042] Funding Source: KAKEN

Ask authors/readers for more resources

We have developed a novel self-heating, temperature-responsive chromatography system for the effective separation of biomolecules. Temperature-responsive poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide), poly(NIPAAm-co-HMAAm), was covalently grafted onto the surface of magnetite/silica composites as 'on-off' switchable surface traps. The lower critical solution temperature (LCST) of the poly(NIPAAm-co-HMAAm)s was controlled from 35 to 55 degrees C by varying the HMAAm content. Using the heat generated by magnetic particles in an alternating magnetic field (AMF) we were able to induce the hydrophilic to hydrophobic phase separation of the grafted temperature-responsive polymers. To assess the feasibility of the poly(NIPAAm-co-HMAAm)-grafted magnetite/silica particles as the stationary phase for chromatography, we packed the particles into the glass column of a liquid chromatography system and analyzed the elusion profiles for steroids. The retention time for hydrophobic steroids markedly increased in the AMF, because the hydrophobic interaction was enhanced via self-heating of the grafted magnetite/silica particles, and this effect could be controlled by changing the AMF irradiation time. Turning off the AMF shortened the total analysis time for steroids. The proposed system is useful for separating bioactive compounds because their elution profiles can be easily controlled by an AMF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available