4.2 Review

Endonucleases and their involvement in plant apoptosis

Journal

RUSSIAN JOURNAL OF PLANT PHYSIOLOGY
Volume 56, Issue 3, Pages 291-305

Publisher

PLEIADES PUBLISHING INC
DOI: 10.1134/S1021443709030017

Keywords

programmed cell death; endonucleases; plants

Categories

Funding

  1. Russian Foundation for Basic Research [05-04-48071]
  2. President of Russian Federation supporting leading scientific schools [NSh-3444.2008.4]

Ask authors/readers for more resources

This review considers modern data about the set, nature, specificity of action, and other properties of plant endonucleases involved in various forms of programmed cell death (PCD) in various plant tissues (organs). Apoptosis is an obligatory component of plant development; plant development is impossible without apoptosis. In dependence on the conditions of plant growth, this process can be induced by various biotic and abiotic factors, including stressors. Endonucleases accomplishing apoptotic degradation of nuclear material in the plant cell play one of the main roles in PCD. Plant endonucleases belong to at least two classes: (1) Ca2+- and Mg2+-dependent and (2) Zn2+-dependent nucleases. The set and activities of endonucleases change with plant age and during apoptosis in a tissue-specific manner. Apoptosis is accompanied by the induction of specific endonucleases hydrolyzing DNA in chromatin with the formation firstly of large domains and then internucleosomal DNA fragments; the products produced are of about 140 nucleotides in length with their subsequent degradation to low-molecular-weight oligonucleotides and mononucleotides. About 30 enzymes are involved in apoptotic DNA degradation. Histone H1 modulates endonuclease activity; separate (sub)fractions of this nuclear protein can stimulate or inhibit corresponding plant endonucleases. In the nucleus and cytoplasm of the plant cells, Ca2+/Mg2+-dependent endonucleases recognizing substrate DNA methylation status were revealed and described for the first time; their action resembles that of bacterial restrictases, which activity is modulated by the donor of methyl groups, S-adenosylmethionine. This indicates that higher eukaryotes (higher plants) might possess the system of restriction-modification to some degree analogous to that of prokaryotes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available