4.2 Article

Analyzing and predicting software integration bugs using network analysis on requirements dependency network

Journal

REQUIREMENTS ENGINEERING
Volume 21, Issue 2, Pages 161-184

Publisher

SPRINGER
DOI: 10.1007/s00766-014-0215-x

Keywords

Requirements dependency; Bug prediction; Network analysis

Funding

  1. National Natural Science Foundation of China [91318301, 91218302, 61432001]

Ask authors/readers for more resources

Complexity, cohesion and coupling have been recognized as prominent indicators of software quality. One characterization of software complexity is the existence of dependency relationships. Moreover, the degree of dependency reflects the cohesion and coupling between software elements. Dependencies in the design and implementation phase have been proven to be important predictors of software bugs. We empirically investigated how requirements dependencies correlate with and predict software integration bugs, which can provide early estimates regarding software quality and thus facilitate decision making early in the software lifecycle. We conducted network analysis on the requirements dependency networks of three commercial software projects. Significant correlation is observed between most of our network measures and the number of bugs. Furthermore, many network measures demonstrate significantly greater values for higher severity (or a higher fixing workload). Afterward, we built bug prediction models using these network measures and found that bugs can be predicted with high accuracy and sensitivity, even in cross-project and cross-company contexts. We further identified the dependency type that contributes most to bug correlation, as well as the network measures that contribute more to bug prediction. These observations show that the requirements dependency network can be used as an early indicator and predictor of software integration bugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available