4.5 Article

Bromodomain protein BRD4 is increased in human placentas from women with early-onset preeclampsia

Journal

REPRODUCTION
Volume 155, Issue 6, Pages 573-582

Publisher

BIOSCIENTIFICA LTD
DOI: 10.1530/REP-17-0744

Keywords

-

Funding

  1. National Health and Medical Research Council [1047025]
  2. University of Melbourne (MDHS Research Fellowship)
  3. Norman Beischer Medical Research Foundation
  4. Mercy Research Foundation
  5. University of Melbourne

Ask authors/readers for more resources

Preeclampsia affects 5% of all pregnancies and is a serious disorder of pregnancy, characterised by high maternal blood pressure, placental hypoxia, fluid retention (oedema) and proteinuria. Women with preeclampsia are associated with exaggerated levels of pro-inflammatory cytokines, chemokines and anti-angiogenic factors such as soluble fms-like tyrosine kinase-1 (sFLT1). Studies in non-gestational tissues have described the bromodomain (BRD) and extraterminal family of proteins, in particular BRD4 to play a critical role in propagating inflammation and is currently a therapeutic target for treating cancer, lung inflammation and asthma. The aims of this study were to: (i) determine the effect of severe early-onset preeclampsia on placental BRD4 expression; (ii) the effect of loss of BRD4 function by siRNA-targeted knockdown or with the BRD inhibitor JQ1 in human primary trophoblast cells and human umbilical vein endothelial cells (HUVECs) on TNF-stimulated production of pro-inflammatory mediators, cell adhesion molecules and anti-angiogenic markers and (iii) the effect of BRD4 suppression on placental sFLT1 secretion under hypoxia conditions and in preeclampic placenta. BRD4 mRNA expression was significantly increased (sevenfold) in severe early-onset preeclampsia placenta. BRD4 silencing resulted in a significant reduction in TNF-induced IL6, CXCL8, CCL2, CXCL1 and sFLT1-e15a mRNA expression and IL6, CXCL8, CCL2, CXCL1 and sFLT1 secretion in primary trophoblast and HUVECs. Additionally, JQ1 treatment significantly reduced placental sFLT1 secretion under hypoxic conditions and in preterm preeclamptic placenta. In conclusion, these findings suggest BRD4 may play a central role in propagating inflammation and endothelial dysfunction associated with the pathophysiology of earlyonset preeclampsia.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available