4.7 Article Proceedings Paper

Modeling large offshore wind farms under different atmospheric stability regimes with the Park wake model

Journal

RENEWABLE ENERGY
Volume 70, Issue -, Pages 164-171

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2014.02.019

Keywords

Atmospheric stability; Park wake model; Offshore; Wake decay coefficient; WAsP

Ask authors/readers for more resources

We evaluate a modified version of the Park wake model against power data from a west-east row in the middle of the Horns Rev I offshore wind farm. The evaluation is performed on data classified in four different atmospheric stability conditions, for a narrow wind speed range, and a wide range of westerly wind directions observed at the wind farm. Simulations (post-processed to partly account for the wind direction uncertainty) and observations show good agreement for all stability classes, being the simulations using a stability-dependent wake decay coefficient closer to the data for the last turbines on the row and those using the WAsP recommended value closer to the data for the first turbines. It is generally seen that under stable and unstable atmospheric conditions the power deficits are the highest and lowest, respectively, but the wind conditions under both stability regimes are different. The ensemble average of the simulations does not approach the limits of the infinite wind farm under any stability condition as such averages account for directions misaligned with the row. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available