4.7 Article

A 10 year installation program for wave energy in Ireland: A case study sensitivity analysis on financial returns

Journal

RENEWABLE ENERGY
Volume 40, Issue 1, Pages 80-89

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2011.09.025

Keywords

Capex; Learning curve; Future cost of cash; Supply/demand; Net present value; Internal rate of return

Funding

  1. Science Foundation Ireland

Ask authors/readers for more resources

This paper is a case study which examines the finances of a proposed installation schedule of 500 MW of a wave energy device type in Ireland. The novel aspects of the analysis were the modelling of the combined influence of learning curves, supply and demand rates as well as future cost of cash on the phased deployment over the 10 years. There are many studies which have examined the economics of renewable energy project installations, including wave energy. However, there is lack of research in the impact and implications of phased installations over time, especially when using a feed-in tariff (FIT) revenue mechanism. The goal of the study was twofold. The first goal was to assess the viability of the current Irish feed-in tariff within the context of a phased installation program for the wave energy device chosen for the study, and measures required to produce a positive rate of return. The second aim was to assess the impact of learning curve, supply/demand curves and future cost of cash on phased project installations. The wave energy device chosen for the study was the Pelamis P1 and the economic model used was NAVITAS, created by HMRC. The assessment was based on net present value and internal rate of return. The wave energy data for the study was 2007 from M4 of the west coast of Ireland, obtained from Marine Institute, Ireland. Results from the case study indicated that the high initial costs for the case study wave energy device had a significant impact on financial returns. Results of the case study indicate that higher tariffs may be required than the current Irish, static, nonindex linked. FIT to foster positive returns for future wave energy projects, especially if phased installations are considered, which are susceptible to future cash and supply/demand factors. The large range of sensitivity factors assessed in the case study demonstrates the vulnerable nature of these large scale projects when estimating financial returns. Further studies will be required to assess multiple device types, update initial costs for wave energy devices, provide reliable power matrices, as well as appropriate learning curve and supply demand rates. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Engineering, Marine

A new method for radiation forces for floating platforms in waves

Wanan Sheng, Raymond Alcorn, Anthony Lewis

OCEAN ENGINEERING (2015)

Review Green & Sustainable Science & Technology

Economic and socio-economic assessment methods for ocean renewable energy: Public and private perspectives

Gordon Dalton, Grant Allan, Nicola Beaumont, Aliki Georgakaki, Nick Hacking, Tara Hooper, Sandy Kerr, Anne Marie O'Hagan, Kieran Reilly, Pierpaolo Ricci, Wanan Sheng, Tim Stallard

RENEWABLE & SUSTAINABLE ENERGY REVIEWS (2015)

Article Green & Sustainable Science & Technology

On improving wave energy conversion, part I: Optimal and control technologies

Wanan Sheng, Raymond Alcorn, Anthony Lewis

RENEWABLE ENERGY (2015)

Article Green & Sustainable Science & Technology

On improving wave energy conversion, part II: Development of latching control technologies

Wanan Sheng, Raymond Alcorn, Anthony Lewis

RENEWABLE ENERGY (2015)

Article Green & Sustainable Science & Technology

Simplified Estimation of the Flicker Level Induced by Wave Energy Farms

Anne Blavette, Dara L. O'Sullivan, Ray Alcorn, Michael G. Egan, Tony W. Lewis

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY (2016)

Article Computer Science, Interdisciplinary Applications

Challenges and lessons learned in the deployment of an offshore oscillating water column

J. Kelly, D. O'Sullivan, W. M. D. Wright, R. Alcorn, A. W. Lewis

COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING (2014)

Article Engineering, Electrical & Electronic

Impact of a Medium-Size Wave Farm on Grids of Different Strength Levels

Anne Blavette, Dara L. O'Sullivan, Ray Alcorn, Tony W. Lewis, Michael G. Egan

IEEE TRANSACTIONS ON POWER SYSTEMS (2014)

Article Green & Sustainable Science & Technology

Assessment of primary energy conversions of oscillating water columns. II. Power take-off and validations

Wanan Sheng, Raymond Alcorn, Anthony Lewis

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY (2014)

Article Green & Sustainable Science & Technology

Assessment of primary energy conversions of oscillating water columns. I. Hydrodynamic analysis

Wanan Sheng, Raymond Alcorn, Anthony Lewis

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY (2014)

Article Engineering, Marine

Physical modelling of wave energy converters

Wanan Sheng, Raymond Alcorn, Tony Lewis

OCEAN ENGINEERING (2014)

Article Green & Sustainable Science & Technology

Operational expenditure costs for wave energy projects and impacts on financial returns

M. O'Connor, T. Lewis, G. Dalton

RENEWABLE ENERGY (2013)

Article Ethics

Joint declaration on mainstreaming RRI across Horizon Europe

Alexander Gerber, Ellen-Marie Forsberg, Clare Shelley-Egan, Rosa Arias, Stephanie Daimer, Gordon Dalton, Ana Belen Cristobal, Marion Dreyer, Erich Griessler, Ralf Lindner, Gema Revuelta, Andrea Riccio, Norbert Steinhaus

JOURNAL OF RESPONSIBLE INNOVATION (2020)

Proceedings Paper Energy & Fuels

NUMERICAL ASSESSMENT ON PRIMARY WAVE ENERGY CONVERSION OF OSCILLATING WATER COLUMNS

Wanan Sheng, Ray Alcorn, Tony Lewis

33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9A: OCEAN RENEWABLE ENERGY (2014)

Proceedings Paper Energy & Fuels

A novel method for estimating the flicker level generated by a wave energy farm composed of devices operated in variable speed mode

Anne Blavette, Ray Alcorn, Michael Egan, Dara O'Sullivan, Mohamed Machmoum, Tony Lewis

2014 NINTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER) (2014)

Article Engineering, Ocean

FP7 EU funded CORES wave energy project: a coordinators' perspective on the Galway Bay sea trials

Raymond Alcorn, Anne Blavette, Mark Healy, Anthony Lewis

UNDERWATER TECHNOLOGY (2014)

Article Green & Sustainable Science & Technology

Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States

Cameron Bracken, Nathalie Voisin, Casey D. Burleyson, Allison M. Campbell, Z. Jason Hou, Daniel Broman

Summary: This study presents a methodology and dataset for examining compound wind and solar energy droughts, as well as the first standardized benchmark of energy droughts across the Continental United States (CONUS) for a 2020 infrastructure. The results show that compound wind and solar droughts have distinct spatial and temporal patterns across the CONUS, and the characteristics of energy droughts are regional. The study also finds that compound high load events occur more often during compound wind and solar droughts than expected.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimal configuration of concentrating solar power generation in power system with high share of renewable energy resources

Ning Zhang, Yanghao Yu, Jiawei Wu, Ershun Du, Shuming Zhang, Jinyu Xiao

Summary: This paper provides insights into the optimal configuration of CSP plants with different penetrations of wind power by proposing an unconstrained optimization model. The results suggest that large solar multiples and TES are preferred in order to maximize profit, especially when combined with high penetrations of wind and photovoltaic plants. Additionally, the study demonstrates the economy and feasibility of installing electric heaters (EH) in CSP plants, which show a linear correlation with the penetration of variable energy resources.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Impact of the air supply system configuration on the straw combustion in small scale batch-boiler- experimental and numerical studies

M. Szubel, K. Papis-Fraczek, S. Podlasek

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Biomethane production from biogas obtained in wastewater treatment plants: Process optimization and economic analysis

J. Silva, J. C. Goncalves, C. Rocha, J. Vilaca, L. M. Madeira

Summary: This study investigated the methanation of CO2 in biogas and compared two different methanation reactors. The results showed that the cooled reactor without CO2 separation achieved a CO2 conversion rate of 91.8%, while the adiabatic reactors achieved conversion rates of 59.6% and 67.2%, resulting in an overall conversion rate of 93.0%. Economic analysis revealed negative net present worth values, indicating the need for government monetary incentives.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Composite nanofiber membranes to enhance the performance of high solids anaerobic digestion of organic rural household waste resources

Yang Liu, Yonglan Xi, Xiaomei Ye, Yingpeng Zhang, Chengcheng Wang, Zhaoyan Jia, Chunhui Cao, Ting Han, Jing Du, Xiangping Kong, Zhongbing Chen

Summary: This study investigated the effect of using nanofiber membrane composites containing Prussian blue-like compound nanoparticles (PNPs) to relieve ammonia nitrogen inhibition of rural organic household waste during high-solid anaerobic digestion and increase methane production. The results showed that adding NMCs with 15% PNPs can lower the concentrations of volatile fatty acids and ammonia nitrogen, and increase methane yield.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Thermodynamic and economic performance evaluations of double-stage organic flash cycle using hydrofluoroolefins (HFOs)

Zhong Ge, Xiaodong Wang, Jian Li, Jian Xu, Jianbin Xie, Zhiyong Xie, Ruiqu Ma

Summary: This study evaluates the thermodynamic, exergy, and economic performance of a double-stage organic flash cycle (DOFC) using ten eco-friendly hydrofluoroolefins. The influences of key parameters on performance are analyzed, and the advantages of DOFC over single-stage type are quantified.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Wind farm power density optimization according to the area size using a novel self-adaptive genetic algorithm

Nicolas Kirchner-Bossi, Fernando Porte-Agel

Summary: This study investigates the optimization of power density in wind farms and its sensitivity to the available area size. A novel genetic algorithm (PDGA) is introduced to optimize power density and turbine layout. The results show that the PDGA-driven solutions significantly reduce the levelized cost of energy (LCOE) compared to the default layout, and exhibit a convex relationship between area and LCOE or power density.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Experimental investigation of indoor lighting/thermal environment of liquid-filled energy-saving windows

Chunxiao Zhang, Dongdong Li, Lin Wang, Qingpo Yang, Yutao Guo, Wei Zhang, Chao Shen, Jihong Pu

Summary: In this study, a novel reversible liquid-filled energy-saving window that effectively regulates indoor solar radiation heat gain is proposed. Experimental results show that this window can effectively reduce indoor temperature during both summer and winter seasons, while having minimal impact on indoor illuminance.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical assessment of tidal potential energy in the Brazilian Equatorial Shelf

Alessandro L. Aguiar, Martinho Marta-Almeida, Mauro Cirano, Janini Pereira, Leticia Cotrim da Cunha

Summary: This study analyzed the Brazilian Equatorial Shelf using a high-resolution ocean model and found significant tidal variations in the area. Several hypothetical barrages were proposed with higher annual power generation than existing barrages. The study also evaluated the installation effort of these barrages.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Optimization of the power output scheduling of a renewables-based hybrid power station using MILP approach: The case of Tilos island

Francesco Superchi, Nathan Giovannini, Antonis Moustakis, George Pechlivanoglou, Alessandro Bianchini

Summary: This study focuses on the optimization of a hybrid power station on the Tilos island in Greece, aiming to increase energy export and revenue by optimizing energy fluxes. Different scenarios are proposed to examine the impact of different agreements with the grid operator on the optimal solution.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Comparison of control strategies for efficient thermal energy storage to decarbonize residential buildings in cold climates: A focus on solar and biomass sources

Peimaneh Shirazi, Amirmohammad Behzadi, Pouria Ahmadi, Sasan Sadrizadeh

Summary: This research presents two novel energy production/storage/usage systems to reduce energy consumption and environmental effects in buildings. A biomass-fired model and a solar-driven system integrated with photovoltaic thermal (PVT) panels and a heat pump were designed and assessed. The results indicate that the solar-based system has an acceptable energy cost and the PVT-based system with a heat pump is environmentally superior. The biomass-fired system shows excellent efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Study on optimization of winter operation characteristics of solar-ground source heat pump in Shanghai

Zihao Qi, Yingling Cai, Yunxiang Cui

Summary: This study aims to investigate the operational characteristics of the solar-ground source heat pump system (SGSHPS) in Shanghai under different operation modes. It concludes that tandem operation mode 1 is the optimal mode for winter operation in terms of energy efficiency.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Platform chemicals recovery from spent coffee grounds aqueous-phase pyrolysis oil

L. Bartolucci, S. Cordiner, A. Di Carlo, A. Gallifuoco, P. Mele, V. Mulone

Summary: Spent coffee grounds are a valuable biogenic waste that can be used as a source of biofuels and valuable chemicals through pyrolysis and solvent extraction processes. The study found that heavy organic bio-oil derived from coffee grounds can be used as a carbon-rich biofuel, while solvent extraction can extract xantines and p-benzoquinone, which are important chemicals for various industries. The results highlight the promising potential of solvent extraction in improving the economic viability of coffee grounds pyrolysis-based biorefineries.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Evaluating energy generation of a building-integrated organic photovoltaic vertical façade: A case study of Latin America's pioneering installation

Luiza de Queiroz Correa, Diego Bagnis, Pedro Rabelo Melo Franco, Esly Ferreira da Costa Junior, Andrea Oliveira Souza da Costa

Summary: Building-integrated photovoltaics, especially organic solar technology, are important for reducing greenhouse gas emissions in the building sector. This study analyzed the performance of organic panels laminated in glass in a vertical installation in Latin America. Results showed that glass lamination and vertical orientation preserved the panels' performance and led to higher energy generation in winter.

RENEWABLE ENERGY (2024)

Article Green & Sustainable Science & Technology

Numerical simulation of fin arrangements on the melting process of PCM in a rectangular unit

Zhipei Hu, Shuo Jiang, Zhigao Sun, Jun Li

Summary: This study proposes innovative fin arrangements to enhance the thermal performance of latent heat storage units. Through optimization of fin distribution and prediction of transient melting behaviors, it is found that fin structures significantly influence heat transfer characteristics and melting behaviors.

RENEWABLE ENERGY (2024)