4.5 Article

Effect of Adjuvant Drugs on the Action of Local Anesthetics in Isolated Rat Sciatic Nerves

Journal

REGIONAL ANESTHESIA AND PAIN MEDICINE
Volume 37, Issue 4, Pages 403-409

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/AAP.0b013e3182485965

Keywords

-

Categories

Funding

  1. Department of Defense grant [OR090012]

Ask authors/readers for more resources

Background and Objectives: There is increasing clinical use of adjuvant drugs to prolong the duration of local anesthetic-induced block of peripheral nerves. However, the mechanistic understanding regarding drug interactions between these compounds in the periphery is quite limited. Accordingly, we undertook this study to determine whether selected adjuvant drugs are efficacious in blocking action potential propagation in peripheral nerves at concentrations used clinically and whether these drugs influence peripheral nerve block produced by local anesthetics. Methods: Isolated rat sciatic nerves were used to assess (1) the efficacy of buprenorphine, clonidine, dexamethasone, or midazolam, alone and in combination, on action potential propagation; and (2) their influence on the blocking actions of local anesthetics ropivacaine and lidocaine. Compound action potentials (CAPs) from A- and C-fibers were studied before and after drug application. Results: At estimated clinical concentrations, neither buprenorphine nor dexamethasone affected either A- or C-waves of the CAP. Clonidine produced a small but significant attenuation of the C-wave amplitude. Midazolam attenuated both A- and C-wave amplitudes, but with greater potency on the C-wave. The combination of clonidine, buprenorphine, and dexamethasone had no influence on the potency or duration of local anesthetic- or midazolam-induced block of A- and C-waves of the CAP. Conclusions: These results suggest that the reported clinical efficacy of clonidine, buprenorphine, and dexamethasone influences the actions of local anesthetics via indirect mechanisms. Further identification of these indirect mechanisms may enable the development of novel approaches to achieve longer-duration, modality-specific peripheral nerve block.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available