4.4 Article

Determination of stimulants using gas chromatography/high-resolution time-of-flight mass spectrometry and a soft ionization source

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 26, Issue 23, Pages 2714-2724

Publisher

WILEY
DOI: 10.1002/rcm.6398

Keywords

-

Ask authors/readers for more resources

RATIONALE The aim of this study was to investigate the mass spectral fragmentation of a small set of stimulants in a high-resolution time-of-flight mass spectrometer equipped with a soft ionization source using vacuum ultraviolet (VUV) photons emitted from different plasma gases. It was postulated that the use of a plasma gas such as Xe, which emits photons at a lower energy than Kr or Ar, would lead to softer ionization of the test compounds, and thus to less fragmentation. METHODS A set of nine stimulants: cocaine, codeine, nicotine, methadone, phenmetrazine, pentylenetetrazole, niketamide, fencamfamine, and caffeine, was analyzed by gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) in positive ion mode with this soft ionization source, using either Xe, Kr, or Ar as plasma gases. Working solutions of the test compounds at 0.1 to 100 ng/mu L were used to establish instrument sensitivity and linearity. RESULTS All test compounds, except methadone and pentylenetetrazole, exhibited strong molecular ions and no fragmentation with Xe-microplasma photoionization (MPPI). Methadone exhibited significant fragmentation not only with Xe, but also with Kr and Ar, and pentylenetetrazole could not be ionized with Xe, probably because its ionization energy is above 8.44 eV. The Kr- and Ar-MPPI mass spectra of the test compounds showed that the relative intensity of the molecular ion decreased as the photon energy increased. CONCLUSIONS When coupled to a TOF mass spectrometer this soft ionization source has demonstrated signal-to-noise (S/N) ratios from 7 to 730 at 100 pg per injection (depending on the compound), and a dynamic range of three orders of magnitude (100 pg to 100 ng) for some of the test compounds. Copyright (C) 2012 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available