4.4 Article

Quadrupole mass filters with added hexapole fields

Journal

RAPID COMMUNICATIONS IN MASS SPECTROMETRY
Volume 24, Issue 14, Pages 1985-1992

Publisher

WILEY
DOI: 10.1002/rcm.4596

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council
  2. MDS-Analytical Technologies through an Industrial Research Chair

Ask authors/readers for more resources

Conventional mass analysis has been investigated experimentally with six quadrupole mass filters with added hexapole fields; three with added hexapole fields of 4%, 8% and 12% with equal diameter rods, and three with added hexapole fields of 4%, 8% and 12% with unequal diameter rods to remove an added octopole field. Compared with conventional quadrupoles, these rod sets have very large field distortions. With the positive resolving dc applied to the y rods (Mathieu parameter a(x) < 0) only low resolution (10-100) and low transmission are seen. With the polarity reversed (a(x) > 0) much higher resolution (>= 1000) and transmission are possible. Increasing the magnitude of the added hexapole field decreases the limiting resolution at m/z 609. Removing the added octopole field increases the limiting resolution. In some cases structure is formed on the peaks. For a given scan line slope, U/V-rf, the resolution decreases as the amplitude of the added hexapole field increases. These results are consistent with changes to the stability diagrams, calculated here. With a(x) > 0, adding a hexapole field causes the x stability boundary to move outward with all rod sets. With a(x) < 0, the boundaries become diffuse and the tip of the stability diagram becomes rounded, limiting the resolution to ca. 10-100. Where comparisons are possible, experiments show the rod sets with added hexapole fields have transmission 10-300 times less than a conventional quadrupole. Thus these quadrupoles are less useful for mass analysis than conventional quadrupoles. However, it is surprising, given the highly distorted fields, that some of the quadrupoles give resolution of 1000 or more. Copyright (C) 2010 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available