4.5 Article

Unaltered hormonal response to stress in a mouse model of fragile X syndrome

Journal

PSYCHONEUROENDOCRINOLOGY
Volume 33, Issue 6, Pages 883-889

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.psyneuen.2008.03.010

Keywords

corticosterone; adrenocorticotrophic hormone; circadian rhythm; fragile X; restraint; elevated plus-maze

Funding

  1. Intramural NIH HHS [Z01 MH000889-28] Funding Source: Medline

Ask authors/readers for more resources

Reports in the clinical literature and studies of fmr1 knockout mice have led to the hypothesis that, in addition to mental retardation, fragile X syndrome is characterized by a dysregulation of hypothalamic-pituitary-adrenal axis function. We have systematically examined this hypothesis by studying the effects of stress on adrenocorticotrophic hormone and corticosterone levels in adult, mate fmr1 knockout mice. Initially we determined the circadian rhythms of the plasma hormone levels in both wild-type and fmr1 knockout mice and established the optimal time to impose the stress. We found no genotypic differences in the circadian rhythms of either hormone. We studied two types of stressors, immobilization and spatial novelty; spatial novelty was 5 min in an elevated plus-maze. We varied the duration of immobilization and followed the time course of recovery of hormones to their pre-stress levels. Despite the lower anxiety exhibited by fmr1 knockout mice in the elevated plus-maze, hormonal responses to and recovery from this spatial novelty were similar in both genotypes. Further, we found no genotypic differences in hormonal responses to immobilization stress. The results of our study indicate that, in FVB/NJ mice, the hormonal response to and recovery from acute stress is unaltered by the lack of fragile X mental retardation protein. Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available