4.6 Article

RDC-assisted modeling of symmetric protein homo-oligomers

Journal

PROTEIN SCIENCE
Volume 17, Issue 5, Pages 899-907

Publisher

WILEY
DOI: 10.1110/ps.073395108

Keywords

NMR; residual dipolar coupling; homo-oligomer; YkuJ; computational modeling

Funding

  1. NIGMS NIH HHS [U54-GM074958, U54 GM074958] Funding Source: Medline

Ask authors/readers for more resources

Protein oligomerization serves an important function in biological processes, yet solving structures of protein oligomers has always been a challenge. For solution NMR, the challenge arises both from the increased size of these systems and, in the case of homo-oligomers, from ambiguities in assignment of intra- as opposed to intersubunit NOEs. In this study, we present a residual dipolar coupling (RDC)assisted method for constructing models of homo-oligomers with purely rotational symmetry. Utilizing the fact that one of the principal axes of the tensor describing the alignment needed for RDC measurement is always parallel to the oligomer symmetry axis, it is possible to greatly restrict possible models for the oligomer. Here, it is shown that, if the monomer structure is known, all allowed dimer models can be constructed using a grid search algorithm and evaluated based on RDC simulations and the quality of the interface between the subunits. Using the Bacillus subtilis protein YkuJ as an example, it is shown that the evaluation criteria based on just two sets of NH RDCs are very selective and can unambiguously produce a model in good agreement with an existing X-ray structure of YkuJ.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available