4.2 Article

An Efficient Support Vector Machine Approach for Identifying Protein S-Nitrosylation Sites

Journal

PROTEIN AND PEPTIDE LETTERS
Volume 18, Issue 6, Pages 573-587

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/092986611795222731

Keywords

S-nitrosylation; S-nitrosylated proteins; nitrosylated; support vector machine; coupling patterns; CPR-SNO

Funding

  1. National Natural Science Foundation of China [10631070, 10971223, 11071252]

Ask authors/readers for more resources

Protein S-nitrosylation plays a key and specific role in many cellular processes. Detecting possible S-nitrosylated substrates and their corresponding exact sites is crucial for studying the mechanisms of these biological processes. Comparing with the expensive and time-consuming biochemical experiments, the computational methods are attracting considerable attention due to their convenience and fast speed. Although some computational models have been developed to predict S-nitrosylation sites, their accuracy is still low. In this work, we incorporate support vector machine to predict protein S-nitrosylation sites. After a careful evaluation of six encoding schemes, we propose a new efficient predictor, CPR-SNO, using the coupling patterns based encoding scheme. The performance of our CPR-SNO is measured with the area under the ROC curve (AUC) of 0.8289 in 10-fold cross validation experiments, which is significantly better than the existing best method GPS-SNO 1.0's 0.685 performance. In further annotating large-scale potential S-nitrosylated substrates, CPR-SNO also presents an encouraging predictive performance. These results indicate that CPR-SNO can be used as a competitive protein S-nitrosylation sites predictor to the biological community. Our CPR-SNO has been implemented as a web server and is available at http://math.cau.edu.cn/CPR -SNO/CPR-SNO.html.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available