4.0 Article

Effect of arrangement of inline splitter plate on flow past square cylinder

Journal

PROGRESS IN COMPUTATIONAL FLUID DYNAMICS
Volume 14, Issue 5, Pages 277-294

Publisher

INDERSCIENCE ENTERPRISES LTD
DOI: 10.1504/PCFD.2014.064554

Keywords

square cylinder; attached and detached inline splitter plate; dual arrangement of splitter plates; drag and lift reduction; delay in onset of vortex shedding

Ask authors/readers for more resources

Two-dimensional numerical study has been carried out to investigate the effect of the presence of a single splitter plate in upstream location, and presence of two splitter plates, in upstream as well as downstream locations, for low Reynolds number incompressible flow past a square cylinder. Using finite difference discretisation and MAC algorithm, an indigenously developed computational code has been used for solution of the governing flow equations. The length of the plate and its position do play good role in controlling the flow past the cylinder. The difficulty lies in identifying an optimum configuration of these parameters. The length of the attached splitter plate as well as separation of the detached splitter plate of fixed length are varied for both the upstream and downstream configurations up to maximum Reynolds number of 200. To begin with, the effect of upstream splitter plate alone in attached as well as detached configuration is studied with an aim to identify the optimum configuration associated with reduced drag as well as delayed onset of vortex shedding. Then, for the optimum configuration of the upstream plate, the effect of downstream plate on flow characteristics and critical Reynolds number for onset of vortex shedding has been studied.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available