4.7 Article

Adaptations to in situ feeding: novel nutrient acquisition pathways in an ancient vertebrate

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 278, Issue 1721, Pages 3096-3101

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2010.2784

Keywords

amino acid; absorption; gill; integument; dissolved organic matter; feeding physiology

Funding

  1. NSERC
  2. Canada Research Chair programme

Ask authors/readers for more resources

During feeding, hagfish may immerse themselves in the body cavities of decaying carcasses, encountering high levels of dissolved organic nutrients. We hypothesized that this feeding environment might promote nutrient acquisition by the branchial and epidermal epithelia. The potential for Pacific hagfish, Eptatretus stoutii, to absorb amino acids from the environment across the skin and gill was thus investigated. L-alanine and glycine were absorbed via specific transport pathways across both gill and skin surfaces, the first such documentation of direct organic nutrient acquisition in a vertebrate animal. Uptake occurred via distinct mechanisms with respect to concentration dependence, sodium dependence and effects of putative transport inhibitors across each epithelium. Significant differences in the absorbed amino acid distribution between the skin of juveniles and adults were noted. The ability to absorb dissolved organic matter across the skin and gill may be an adaptation to a scavenging lifestyle, allowing hagfish to maximize sporadic opportunities for organic nutrient acquisition. From an evolutionary perspective, hagfish represent a transitory state between the generalized nutrient absorption pathways of aquatic invertebrates and the more specialized digestive systems of aquatic vertebrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available