4.4 Article

Amplification efficiency and thermal stability of qPCR instrumentation: Current landscape and future perspectives

Journal

EXPERIMENTAL AND THERAPEUTIC MEDICINE
Volume 10, Issue 4, Pages 1261-1264

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/etm.2015.2712

Keywords

quantitative polymerase chain reaction; thermal uniformity; amplification efficiency

Funding

  1. BJS
  2. Brunel University

Ask authors/readers for more resources

Quantitative polymerase chain reaction (qPCR) is a method of amplifying and detecting small samples of genetic material in real time and is in routine use across many laboratories. Speed and thermal uniformity, two important factors in a qPCR test, are in direct conflict with one another in conventional peltier-driven thermal cyclers. To overcome this, companies are developing novel thermal systems for qPCR testing. More recently, qPCR technology has developed to enable its use in point-of-care testing (POCT), where the test is administered and results are obtained in a single visit to a health provider, particularly in developing countries. For a system to be suitable for POCT it must be rapid and reliable. In the present study, the speed and thermal uniformity of four qPCR thermal cyders currently available were compared, two of which use the conventional peltier/block heating method and two of which use novel heating and cooling methods. The time required to complete 40 cycles varied between 12 and 58 min, and the C-t values were comparable, ranging between 13.6 and 16.8. Therefore, the novel technologies investigated in the present study for qPCR instrumentation performed equally well compared with conventional qPCR instruments, in terms of amplification efficiency and thermal uniformity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available