4.7 Article

The effects of particle size on microwave heating of metal and metal oxide powders

Journal

POWDER TECHNOLOGY
Volume 256, Issue -, Pages 113-117

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2014.02.008

Keywords

Microwave heating; Powder compacts; Iron oxide powder; Aluminum powder; Nanoparticles

Funding

  1. Office of Naval Research [N000141110424]

Ask authors/readers for more resources

To understand the effect of particle size on microwave absorption, it is important to separate absorption in good bulk conductors (like aluminum or copper) from dielectrics, like iron oxide (Fe2O3). This study experimentally examined coupling microwaves to powder compacts of discretely different materials such as aluminum and iron oxide as a function of particle size. An electromagnetic chamber exposed compacted powder samples of each material to microwaves at a frequency of 3.3 GHz and in-situ 2-D spatial temperature measurements of the sample surface were captured to quantify microwave heating. Results show that for the non-conductive oxidizer (Fe2O3), decreasing the particle size increased the microwave absorption because of the increase in effective surface area and effective conductivity. In contrast, decreasing the conductive metal (Al) particle size resulted in decreased microwave absorption because the ratio of particle size to the skin depth was shown to be a critical parameter controlling energy absorption. This research contributes to new understandings of how microwave energy interacts with metal and metal oxide compacted pellets as a function of particle size. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available