4.7 Article

Effects of cold stress on the messenger ribonucleic acid levels of peroxisome proliferator-activated receptor-gamma in spleen, thymus, and bursa of Fabricius of chickens

Journal

POULTRY SCIENCE
Volume 88, Issue 12, Pages 2549-2554

Publisher

OXFORD UNIV PRESS
DOI: 10.3382/ps.2009-00404

Keywords

spleen; thymus; bursa of Fabricius; cold stress; peroxisome proliferator-activated receptor-gamma

Ask authors/readers for more resources

This study was to investigate the expression trait of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) gene and the effect of cold stress on the mRNA levels of PPAR-gamma in spleen, thymus, and bursa of Fabricius of chickens. Eighty-four 1-d-old male chickens were randomly allocated to 12 groups (7 chickens per group). There was 1 control group and 5 treatment groups for acute cold stress and 3 control groups and 3 treatment groups for chronic cold stress. Chickens were maintained in our animal facility, kept under a 16L:8D cycle and temperature (30 +/- 2 degrees C), and given free access to standard chow and water. The cold stress was initiated when the birds were 15 d of age, with the duration of the acute cold stress being 1, 3, 6, 12, and 24 h, and the chronic cold stress was 5, 10, and 20 d, respectively. Cold stress temperature was 12 +/- 1 degrees C. Spleen, thymus, and bursa of Fabricius were collected for the assessment of the mRNA levels by real-time PCR after stress termination. The results showed that the PPAR-gamma gene is expressed in spleen, thymus, and bursa of Fabricius, and its expression level is different in different tissues and at different ages. Acute cold stress significantly decreased (P < 0.05) the mRNA levels of the PPAR-gamma gene of spleen and thymus in all treatment groups and significantly increased (P < 0.05) the mRNA levels of the PPAR-gamma gene of bursa of Fabricius in all treatment groups. Compared with the corresponding control groups, chronic cold stress resulted in a significant increase (P < 0.05) of the mRNA levels of the PPAR-gamma gene in spleen and a significant decrease (P < 0.05) of the mRNA levels of the PPAR-gamma gene in thymus and bursa of Fabricius. The results indicate that the PPAR-gamma gene is expressed in all 3 immune organs and has different expression traits. The magnitude and direction of change in PPAR-gamma gene expression differs with the type of cold stress applied and also varies by tissue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available