4.2 Article

Tiller population dynamics of reciprocally transplanted Eriophorum vaginatum L. ecotypes in a changing climate

Journal

POPULATION ECOLOGY
Volume 57, Issue 1, Pages 117-126

Publisher

WILEY
DOI: 10.1007/s10144-014-0459-9

Keywords

Adaptational lag; Climate change; Reciprocal transplant; Thermal niche; Weibull distribution; Yellow Taxi analysis

Categories

Funding

  1. Arctic LTER project [NSF-DEB-1026843]
  2. National Science Foundation [ARC-0908936]
  3. Directorate For Geosciences
  4. Office of Polar Programs (OPP) [1107707] Funding Source: National Science Foundation
  5. Division Of Environmental Biology
  6. Direct For Biological Sciences [1026843] Funding Source: National Science Foundation

Ask authors/readers for more resources

Moist tussock tundra, dominated by the sedge Eriophorum vaginatum L., covers approximately 3.36 x 10(8) km(2) of arctic surface area along with large amounts of subarctic land area. Eriophorum vaginatum exhibits ecotypic differentiation along latitudinal gradients in Alaska. While ecotypic differentiation may be beneficial during periods of climate stability, it may be detrimental as climate changes, causing adaptational lag. Following harvest of a 30-year reciprocal transplant experiment, age-specific demographic data on E. vaginatum tillers were collected to parameterize a Leslie matrix. Yellow Taxi analysis, based on Tukey's Jackknife, was used to determine mean pseudovalues of tiller population growth rate () for four source populations of E. vaginatum tussocks that were transplanted to each of three gardens along a latitudinal gradient. Source populations responded differentially along the latitudinal gradient. Survival and daughter tiller production influenced differences seen at the mid-latitude garden, and the overall tiller population performance was generally improved by northward transplanting relative to southward transplanting. A comparison of home-source and away-source within the same transplant garden indicates no home-site advantage. Although populations were still growing when transplanted to home-sites ( = 1.056), tiller population growth rate increased as Delta GDD became more negative relative to the home site (i.e., as tussocks were transplanted north). These results imply that populations are affected by climate gradients in a manner consistent with adaptational lag. This study documenting the response of high-latitude ecotypes to climate gradients may be an indication of the possible future effects of climate shift in more southern latitudes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available