4.6 Article

Crystal structure of dipeptidyl peptidase III from the human gut symbiont Bacteroides thetaiotaomicron

Journal

PLOS ONE
Volume 12, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0187295

Keywords

-

Funding

  1. Croatian Ministry of Science, Education and Sport [098-1191344-2938]
  2. European Community's Seventh Framework Programme (FP7) under BioStruct-X [283570]
  3. European Community's Seventh Framework Programme under New Molecular Solutions in Research and Development for Innovative Drugs [lnnoMol-FP7-REGPOT-2012-2013-1, 316289]
  4. Austrian Science Funds (FWF) [W901]
  5. DK Molecular Enzymology, Austrian Exchange Service (OeAD) within the Scientific & Technological Cooperation (WTZ) [HR 09/2012, HR 06/2016]

Ask authors/readers for more resources

Bacteroides thetaiotaomicron is a dominant member of the human intestinal microbiome. The genome of this anaerobe encodes more than 100 proteolytic enzymes, the majority of which have not been characterized. In the present study, we have produced and purified recombinant dipeptidyl peptidase 111 (DPP III) from B. thetaiotaomicron for the purposes of biochemical and structural investigations. DPP III is a cytosolic zinc-metallopeptidase of the M49 family, involved in protein metabolism. The biochemical results for B. thetaiotaomicron DPP III from our research showed both some similarities to, as well as certain differences from, previously characterised yeast and human DPP III. The 3D-structure of B. thetaiotaomicron DPP III was determined by X-ray crystallography and revealed a two-domain protein. The ligand-free structure (refined to 2.4 A) was in the open conformation, while in the presence of the hydroxamate inhibitor Tyr-Phe-NHOH, the closed form (refined to 3.3 A) was observed. Compared to the closed form, the two domains of the open form are rotated away from each other by about 28 degrees. A comparison of the crystal structure of B. thetaiotaomicron DPP III with that of the human and yeast enzymes revealed a similar overall fold. However, a significant difference with functional implications was discovered in the upper domain, farther away from the catalytic centre. In addition, our data indicate that large protein flexibility might be conserved in the M49 family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available