4.6 Article

Honokiol induces reactive oxygen species-mediated apoptosis in Candida albicans through mitochondrial dysfunction

Journal

PLOS ONE
Volume 12, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0172228

Keywords

-

Funding

  1. National Natural Science Foundation of China [81302814]
  2. Jiangsu Province Natural Science Foundation [BK20130640, BK20140624]

Ask authors/readers for more resources

Objective To investigate the effects of honokiol on induction of reactive oxygen species (ROS), antioxidant defense systems, mitochondrial dysfunction, and apoptosis in Candida albicans. Methods To measure ROS accumulation, 2',7'-dichlorofluorescein diacetate fluorescence was used. Lipid peroxidation was assessed using both fluorescence staining and a thiobarbituric acid reactive substances (TBARS) assay. Protein oxidation was determined using dinitrophenylhydrazine derivatization. Antioxidant enzymatic activities were measured using commercially available detection kits. Superoxide dismutase (SOD) genes expression was measured using real time RT-PCR. To assess its antifungal abilities and effectiveness on ROS accumulation, honokiol and the SOD inhibitor N,N'-diethyldithiocarbamate (DDC) were used simultaneously. Mitochondrial dysfunction was assessed by measuring the mitochondrial membrane potential (mt Delta psi). Honokiol-induced apoptosis was assessed using an Annexin V-FITC apoptosis detection kit. Results ROS, lipid peroxidation, and protein oxidation occurred in a dose-dependent manner in C. albicans after honokiol treatment. Honokiol caused an increase in antioxidant enzymatic activity. In addition, honokiol treatment induced SOD genes expression in C. albicans cells. Moreover, addition of DDC resulted in increased endogenous ROS levels and potentiated the antifungal activity of honokiol. Mitochondrial dysfunction was confirmed by measured changes to mt Delta psi. The level of apoptosis increased in a dose-dependent manner after honokiol treatment. Conclusions Collectively, these results indicate that honokiol acts as a pro-oxidant in C. albicans. Furthermore, the SOD inhibitor DDC can be used to potentiate the activity of honokiol against C. albicans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available