4.6 Article

Light Limitation within Southern New Zealand Kelp Forest Communities

Journal

PLOS ONE
Volume 10, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0123676

Keywords

-

Funding

  1. Tertiary Education Commission
  2. University of Otago

Ask authors/readers for more resources

Light is the fundamental driver of primary productivity in the marine environment. Reduced light availability has the potential to alter the distribution, community composition, and productivity of key benthic primary producers, potentially reducing habitat and energy provision to coastal food webs. We compared the underwater light environment of macroalgal dominated shallow subtidal rocky reef habitats on a coastline modified by human activities with a coastline of forested catchments. Key metrics describing the availability of photosynthetically active radiation (PAR) were determined over 295 days and were related to macroalgal depth distribution, community composition, and standing biomass patterns, which were recorded seasonally. Light attenuation was more than twice as high in shallow subtidal zones along the modified coast. Macroalgal biomass was 2-5 times greater within forested sites, and even in shallow water (2m) a significant difference in biomass was observed. Longterm light dose provided the best explanation for differences in observed biomass between modified and forested coasts, with light availability over the study period differing by 60 and 90 mol photons m(-2) at 2 and 10 metres, respectively. Higher biomass on the forested coast was driven by the presence of larger individuals rather than species diversity or density. This study suggests that commonly used metrics such as species diversity and density are not as sensitive as direct measures of biomass when detecting the effects of light limitation within macroalgal communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available