4.6 Article

Numerical Simulation and Structural Optimization of the Inclined Oil/Water Separator

Journal

PLOS ONE
Volume 10, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0124095

Keywords

-

Funding

  1. Science and Technology Innovation Foundation of CNPC [2012D-5006-0602]
  2. Graduate Innovation Foundation of SouthWest Petroleum University (SGIFSWPU)

Ask authors/readers for more resources

Improving the separation efficiency of the inclined oil/water separator, a new type of gravity separation equipment, is of great importance. In order to obtain a comprehensive understanding of the internal flow field of the separation process of oil and water within this separator, a numerical simulation based on Euler multiphase flow analysis and the realizable k-epsilon two equation turbulence model was executed using Fluent software. The optimal value ranges of the separator's various structural parameters used in the numerical simulation were selected through orthogonal array experiments. A field experiment on the separator was conducted with optimized structural parameters in order to validate the reliability of the numerical simulation results. The research results indicated that the horizontal position of the dispenser, the hole number, and the diameter had significant effects on the oil/water separation efficiency, and that the longitudinal position of the dispenser and the position of the weir plate had insignificant effects on the oil/water separation efficiency. The optimal structural parameters obtained through the orthogonal array experiments resulted in an oil/water separation efficiency of up to 95%, which was 4.996% greater than that realized by the original structural parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available